1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gnom [1K]
3 years ago
15

What is the moment of inertia i of this assembly about the axis through which it is pivoted?

Physics
1 answer:
vivado [14]3 years ago
7 0

Answer:

I = \frac{1}{12}m_t(2x)^2+m_1x^2+m_2x^2

Explanation:

The moment of inertia for the beam is:

I = \frac{1}{12}m_tL^2

Where m_t is the mass of the beam and L is the lengh of the beam

note:

L = 2x

And for particles I is equal to:

I = MR^2

where M is the mass of the particle and R is the distance between the pivot and the particle.

Finally, the moment of inertia for this assembly is the sum of the moment of inertia of the particles and the beam. So:

I = \frac{1}{12}m_t(2x)^2+m_1x^2+m_2x^2

You might be interested in
Berilah contoh kemenangan dengan two winning set pada permainan bulutangkis?
mr_godi [17]
Plz write it in English
7 0
3 years ago
how fast is a ball going when it hits the ground after being dropped from a height of 16m the acceleration of gravity is 9.8
Aneli [31]

Answer:

17.7 m/s

Explanation:

Given:

y₀ = 0 m

y = 16 m

v₀ = 0 m/s

a = 9.8 m/s²

Find: v

v² = v₀² + 2a (y − y₀)

v² = (0 m/s)² + 2 (9.8 m/s²) (16 m − 0 m)

v = 17.7 m/s

The ball is moving at a speed of 17.7 m/s when it hits the ground.

8 0
3 years ago
A neutron star has more mass then what and is about the same size as what?
Alex_Xolod [135]
A neutron star has more mass than a bowling ball,
and is about the same size as Chicago.
5 0
3 years ago
How do waves behave differently to Earth's interior as they encounter the boundaries of different mediums?
Natalka [10]

Answer:

Explanation:

When they encounter boundaries between different media, the waves react according to Snell’s law, and the angle of refraction across the boundary will depend on the velocity of the second media relative to the first

3 0
3 years ago
An object with mass 100 kg moved in outer space. When it was at location <8, -30, -4> its speed was 5.5 m/s. A single cons
Alenkasestr [34]

Answer:

v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

Explanation:

We can solve this problem using the kinematic relations, we have a three-dimensional movement, but we can work as three one-dimensional movements where the only parameter in common is time (a scalar).

X axis.

They indicate the initial position x = 8 m, its initial velocity v₀ = 5.5 m / s, the force Fx₁ = 220 N x₁ = 14 m, now the force changes to Fx₂ = 100 N up to the point xf = 17 m. The final speed is wondered.

As this movement is in three dimensions we must find the projection of the initial velocity in each axis, for this we can use trigonometry

the angle fi is with respect to the in z and the angle theta with respect to the x axis.

               sin φ = z / r

                Cos φ = r_p / r

               z = r sin φ

               r_p = r cos φ

the modulus of the vector r can be found with the Pythagorean theorem

               r² = (x-x₀) ² + (y-y₀) ² + (z-z₀) ²

               r² = (14-8) 2 + (-21 + 30) 2+ (-7 +4) 2

               r = √126

               r = 11.23 m

Let's find the angle with respect to the z axis (φfi)

                φ = sin⁻¹ z / r

                φ = sin⁻¹ ( \frac{-7+4}{11.23} )

                φ = 15.5º

Let's find the projection of the position vector (r_p)

                r_p = r cos φ

                r_p = 11.23 cos 15.5

                r_p = 10.82 m

This vector is in the xy plane, so we can use trigonometry to find the angle with respect to the x axis.

                 cos θ = x / r_p

                 θ = cos⁻¹ x / r_p

                 θ = cos⁻¹ ( \frac{14-8}{10.82})  

                 θ = 56.3º

taking the angles we can decompose the initial velocity.

               sin φ = v_z / v₀

               cos φ = v_p / v₀

               v_z = v₀ sin φ

               v_z = 5.5 sin 15.5 = 1.47 m / z

               v_p = vo cos φ

               v_p = 5.5 cos 15.5 = 5.30 m / s

                 

               cos θ = vₓ / v_p

                sin θ = v_y / v_p

                vₓ = v_p cos θ

                v_y = v_p sin θ

                vₓ = 5.30 cos 56.3 = 2.94 m / s

                v_y = 5.30 sin 56.3 = 4.41 m / s

 

                 

we already have the components of the initial velocity

                v₀ = (2.94 i ^ + 4.41 j ^ + 1.47 k ^) m / s

let's find the acceleration on this axis (ax1) using Newton's second law

                Fₓx = m aₓ₁

                aₓ₁ = Fₓ / m

                aₓ₁ = 220/100

                aₓ₁ = 2.20 m / s²

Let's look for the velocity at the end of this interval (vx1)

Let's be careful if the initial velocity and they relate it has the same sense it must be added, but if the velocity and acceleration have the opposite direction it must be subtracted.

                 vₓ₁² = v₀ₓ² + 2 aₓ₁ (x₁-x₀)

                 

let's calculate

                 vₓ₁² = 2.94² + 2 2.20 (14-8)

                 vₓ₁ = √35.04

                 vₓ₁ = 5.92 m / s

to the second interval

they relate it to xf

                   aₓ₂ = Fₓ₂ / m

                   aₓ₂ = 100/100

                   aₓ₂ = 1 m / s²

final speed

                    v_{xf}²  = vₓ₁² + 2 aₓ₂ (x_f- x₁)

                    v_{xf}² = 5.92² + 2 1 (17-14)

                    v_{xf} =√41.05

                    v_{xf} = 6.41 m / s

We carry out the same calculation for each of the other axes.

Axis y

acceleration (a_{y1})

                      a_{y1} = F_y / m

                      a_{y1} = 460/100

                      a_[y1} = 4.60 m / s²

the velocity at the end of the interval (v_{y1})

                      v_{y1}² = v_{oy}² + 2 a_{y1{ (y₁ -y₀)

                      v_{y1}2 = 4.41² + 2 4.60 (-21 + 30)

                      v_{y1} = √102.25

                       v_{y1} = 10.11 m / s

second interval

acceleration (a_{y2})

                      a_{y2} = F_{y2} / m

                      a_{y2} = 260/100

                      a_{y2} = 2.60 m / s2

final speed

                     v_{yf}² = v_{y1}² + 2 a_{y2} (y₂ -y₁)

                     v_{yf}² = 10.11² + 2 2.60 (-27 + 21)

                      v_{yf} = √ 71.01

                      v_{yf} = 8.43 m / s

here there is an inconsistency in the problem if the body is at y₁ = -27m and passes the position y_f = -21 m with the relationship it must be contrary to the velocity

z axis

 

first interval, relate (a_{z1})

                      a_{z1} = F_{z1} / m

                      a_{z1} = -200/100

                      a_{z1} = -2 m / s

the negative sign indicates that the acceleration is the negative direction of the z axis

the speed at the end of the interval

                    v_{z1}² = v_{zo)² + 2 a_{z1} (z₁-z₀)

                    v_{z1}² = 1.47² + 2 (-2) (-7 + 4)

                    v_{z1} = √14.16

                    v_{z1} = -3.76 m / s

second interval, acceleration (a_{z2})

                    a_{z2} = F_{z2} / m

                    a_{z2} = 210/100

                    a_{z2} = 2.10 m / s2

final speed

                    v_{fz}² = v_{z1}² - 2 a_{z2} | z_f-z₁)

                    v_{fz}² = 3.14² - 2 2.10 (-3 + 7)

                     v_{fz} = √6.94

                     v_{fz} = 2.63 m / s

speed is     v = ( 6.41 i^ + 8.43 j^ + 2.63 k^ ) m/s

5 0
2 years ago
Other questions:
  • The speed of an aircraft is sometimes expressed as a mach number: mach 1 means that the speed is equal to the speed of sound. if
    14·1 answer
  • A circuit contains a 1.5 volt battery and a bulb with a resistance of 3 ohms. Calculate the current
    6·1 answer
  • At positions and_______, _______kinetic energy is maximum. At position
    5·2 answers
  • Please help me, anyone!!!
    6·2 answers
  • What is the longest wavelength in the molecule’s absorption spectrum??
    13·2 answers
  • A geosynchronous Earth satellite is one that has an orbital period of precisely 1 day. Such orbits are useful for communication
    7·1 answer
  • An aircraft flying in a straight
    9·1 answer
  • What would a force diagram for something WHILE it is being thrown DOWNWARDS look like? <br><br> Ty
    14·1 answer
  • A baseball is hit with a speed of 27.0 m/s at an angle of 47.0 ∘ . It lands on the flat roof of a 10.0 m -tall nearby building.
    12·1 answer
  • a student taps the side of a stainless steel can containing water, making some sound waves travel from the stainless steel to th
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!