The difference would be that Mercury has a denser, warmer atmosphere and Earth has a not that dense and gassy atmosphere. The Earth's atmosphere also has a lot of layers while Mercury's doesn't. Those would be the reasons for them both being different. Hope this helped!
Hydrogen reacts with oxygen based on the following equation:
2 H2<span> + O</span>2<span> → 2 H</span>2<span>O
</span>
From the periodic table:
molar mass of hydrogen = 1 gram
molar mass of oxygen = 16 grams
From the balanced equation above, we can find that:
4 grams of hydrogen react with 32 grams of oxygen to produce 36 grams of water.
This means that: 0.73 grams of hydrogen require (0.73x32) / 4 = 5.84 grams of oxygen to react with.
Since only 3.28 grams of oxygen are reacting, this means that oxygen is our limiting reagent and that the reaction would stop once the amount of oxygen is consumed.
So, we will base our calculations on oxygen.
mass of water produced from 3.28 grams of oxygen can be calculated as follows:
mass of water = (3.28 x 36) / 32 = 3.69 grams
Answer:
Hi
True
Explanation:
Since on the inner and outer surfaces of the membrane, a series of negatively charged amino acids are found, which increase the local concentration of cations. The path of the ions begins on the inner surface filled with water molecules where the ion can retain its hydration sphere. Two thirds of its interior in the membrane the inside of the channel narrows in the region of the selectivity filter, forcing the ion to separate from the water molecules. Oxygen atoms in the selectivity filter replace the water molecules in the K+ hydration sphere, forming a series of coordination spheres through which the ion moves. The preferential stabilization of K+ against Na+ is the basis of the ion selectivity of this filter.