1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
3 years ago
6

Which is an abiotic factor that can be found in a rain forest ecosystem?

Biology
1 answer:
ss7ja [257]3 years ago
8 0

Answer:

A. Air

Explanation:

Abiotic factors are things that are not living.

Air can be found in a rain forest ecosystem, as it can be found in all ecosystems, but it is not living.

On the other hand, algae, flowers, and animals are biotic instead of abiotic because they are living things.

So, A is the correct answer.

You might be interested in
Describe abnormal red blood cells.
iris [78.8K]
Red blood cells (RBCs), also called erythrocytes, are cells that circulate in the blood and carry oxygen throughout the body. Abnormally shaped blood cells are called poikilocytes. RBCs carry oxygen and nutrients to your body’s tissues and organs. If your RBCs are irregularly shaped, they may not be able to carry enough oxygen.
8 0
3 years ago
How is dna structured
IceJOKER [234]

Answer:

DNA is made up of molecules called nucleotides. Nucleotides are attached together to form two long strands that spiral to create a structure called a double helix. If you think of the double helix structure as a ladder, the phosphate and sugar molecules would be the sides, while the bases would be the rungs.

Explanation:

I hope this helps:)

3 0
3 years ago
Read 2 more answers
The digestive system breaks carbohydrates down into simple sugars. this is important because
otez555 [7]
(C)因為碳水化合物在初步的消化系統中就會將其分解為簡單的醣類使人體方便吸收代謝
5 0
3 years ago
In Drosophila melanogaster, vestigial wings (vg) is recessive to normal wings (vg+), black body (b) is recessive to gray body (b
yan [13]

Correct progeny phenotype:

  • 1779 vestigial wings, black body and purple eyes, vg b pr  
  • 1665 normal wings, a grey body and red eyes, vg+ b+ pr+
  • 252 normal wings, an black body and purple eyes, vg+ b pr
  • 241 vestigial wings, a gray body and red eyes, vg b+ pr+
  • 131 normal wings, an black body and red eyes, vg +b pr+
  • 118 vestigial wings, a gray body and purple eyes, vg b+ pr
  • 13 vestigial wings, an black body and red eyes, vg b pr+
  • 9 normal wings, a gray body and purple eyes, vg+ b+ pr

Answer:

  • The order of these genes is vg --- pr --- b
  • Map distances between the genes vg/pr = 12.2 MU
  • Map distance between the genes pr/b = 6.4 MU
  • Map distances between the genes vg/b = 18.6 MU

Explanation:

We know that

•Normal wings expressed by vg+ is dominant over vestigial wings, vg

•Gray body b+ is dominant over black body

•Red eyes, pr+, is dominant over purple ayes, pr

We have the number of descendants of each phenotype product of the tri-hybrid cross.

•1779 vestigial wings, black body and purple eyes vg b pr  

•1665 normal wings, a grey body and red eyes vg+ b+ pr+

•252 normal wings, an black body and purple eyes vg+ b pr

•241 vestigial wings, a gray body and red eyes vg b+ pr+

•131 normal wings, an black body and red eyes vg +b pr+

• 118 vestigial wings, a gray body and purple eyes vg b+ pr

•13 vestigial wings, an black body and red eyes vg b pr+

• 9 normal wings, a gray body and purple eyes vg+ b+ pr

The total number of individuals is 4208.

In a tri-hybrid cross, it can occur that the three genes assort independently or that two of them are linked and the third not, or that the three genes are linked. In this example, in particular, the three genes are linked on the same chromosome.

Knowing that the genes are linked, we can calculate genetic distances between them. First, we need to know their order in the chromosome, and to do so, we need to compare the genotypes of the parental gametes with the ones of the double recombinants. We can recognize the parental gametes in the descendants because their phenotypes are the most frequent, while the double recombinants are the less frequent. So:

<u>Parental)</u>

  • 1779 vestigial wings, black body and purple eyes vg b pr  
  • 1665 normal wings, a grey body and red eyes vg+ b+ pr+

<u>Double recombinant)</u>

  • 13 vestigial wings, an black body and red eyes vg b pr+
  • 9 normal wings, a gray body and purple eyes vg+ b+ pr

<u>Simple recombinant)</u>

  • 252 normal wings, an black body and purple eyes vg+ b pr
  • 241 vestigial wings, a gray body and red eyes vg b+ pr+
  • 131 normal wings, an black body and red eyes vg +b pr+
  • 118 vestigial wings, a gray body and purple eyes vg b+ pr

Comparing parental with the double recombinants we will realize that between  

  • vg b pr (parental)
  • vg b pr+ (double recombinant)

and  

  • vg+ b+ pr+ (Parental)
  • vg+ b+ pr (double recombinant)

They only change in the position of the alleles pr/pr+. This suggests that the position of the gene pr is in the middle of the other two genes, vg and b, because in a double recombinant only the central gene changes position in the chromatid.  

So, the order of the genes is:

---- vg ---- pr -----b ----

Now we will call Region I to the area between vg and pr and Region II to the area between pr and b.

Once established the order of the genes we can calculate distances between them, and we will do it from the central gene to the genes on each side. First We will calculate the recombination frequencies, and we will do it by region. We will call P1 to the recombination frequency between vg and pr genes, and P2 to the recombination frequency between pr and b.

P1 = (R + DR) / N

P2 = (R + DR)/ N

Where: R is the number of simple recombinants in each region, DR is the number of double recombinants in each region, and N is the total number of individuals.  

So:

Parental)

• 1779 vestigial wings, black body and purple eyes vg pr b  

• 1665 normal wings, a grey body and red eyes vg+ pr+ b+  

Double recombinant)

• 13  vg pr+ b  

• 9  vg+ pr b+  

Simple recombinant)

• 252  vg+ pr b  

• 241 vg pr+ b+  

• 131  vg+ pr+ b  

• 118  vg pr b+  

P1 = (R + DR) / N

P1 = (252+241+13+9)/4208

P1 = 515/4208

P1 = 0.122

P2= (R + DR) / N

P2 = (131+118+13+9)/4208

P2 = 271/4208

P2 = 0.064

Now, to calculate the recombination frequency between the two extreme genes, vg and b, we can just perform addition or a sum:

P1 + P2= Pt

0.122 + 0.064 = Pt

0.186=Pt

The genetic distance will result from multiplying that frequency by 100 and expressing it in map units (MU). One centiMorgan (cM) equals one map unit (MU).  

The map unit is the distance between the pair of genes. Every 100 meiotic products, one of them results in a recombinant product. Now we must multiply each recombination frequency by 100 to get the genetic distance in map units:

GD1= P1 x 100 = 0.122 x 100 = 12.2 MU

GD2= P2 x 100 = 0.064 x 100 = 6.4 MU

GD3=Pt x 100 = 0.186 x 100 = 18.6 MU

---- vg ---------------------- pr ---------------------b ----

                    R1                                 R2

-----vg----12.2MU---------pr—

                                   ----pr--------6.4 MU----b—

-----vg ----------------18.6 MU--------------------b----

                                   

3 0
3 years ago
Please select the word from the list that best fits the definition
sergey [27]

its till just took the test

4 0
3 years ago
Read 2 more answers
Other questions:
  • Why are the valence electrons of carbon important
    14·1 answer
  • Minerals cannot be described by which of the following terms? Select all that
    5·1 answer
  • When a sperm cell and an egg emerge, they undergo the process of fertilization and give rise to a?
    8·1 answer
  • . The Vmax of a glucose transport into a certain preparation of red blood cells is determined to be 1206nmol glucose/s without A
    5·1 answer
  • Use lysosome in a sentence
    10·2 answers
  • What are the products of photosynthesis
    12·1 answer
  • Number 6 please answer
    14·2 answers
  • Island arcs occur near
    14·2 answers
  • Name 4 examples of proteins.
    8·2 answers
  • Which environment will have a negative impact on both cells with a cell wall and cells without a cell wall?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!