Answer: Phillip is correct. The triangles are <u>not </u>congruent.
How do we know this? Because triangle ABC has the 15 inch side between the two angles 50 and 60 degrees. The other triangle must have the same set up (just with different letters XYZ). This isn't the case. The 15 inch side for triangle XYZ is between the 50 and 70 degree angle.
This mismatch means we cannot use the "S" in the ASA or AAS simply because we don't have a proper corresponding pair of sides. If we knew AB, BC, XZ or YZ, then we might be able to use ASA or AAS.
At this point, there isn't enough information. So that means John and Mary are incorrect, leaving Phillip to be correct by default.
Note: Phillip may be wrong and the triangles could be congruent, but again, we don't have enough info. If there was an answer choice simply saying "there isn't enough info to say either if the triangles are congruent or not", then this would be the best answer. Unfortunately, it looks like this answer is missing. So what I bolded above is the next best thing.
You want to know the factor by which 3 2/3 is multiplied to get 7 1/3.
1. You can estimate that it is 2 from 7/3 ≈ 2, then check by multiplication to see if that is right.
.. 2*(3 2/3) = 6 4/3 = 7 1/3 . . . . 2 is the correct factor.
2. You can divide 7 1/3 by 3 2/3 to see what the factor is.
.. (7 1/3)/(3 2/3) = (22/3)/(11/3) = 22/11 = 2 . . . . 2 is the factor Earl used.
3. You could see how many times you can subtract 3 2/3 from 7 1/3.
.. 7 1/3 -3 2/3 = (7 -3) +(1/3 -2/3) = 4 -1/3 = 3 2/3 . . . . . subtracting once gives 3 2/3
.. 3 2/3 -3 2/3 = 0 . . . . . . subtracting twice gives 0, so the factor is 2.
4. You could add 3 2/3 to see how many times it takes to get 7 1/3.
.. 3 2/3 +3 2/3 = (3 +3) +(2/3 +2/3) = 6 +4/3 = 7 1/3
We only need to add two values of 3 2/3 to get 7 1/3, so the factor is 2.
___
We have shown methods using multiplication, division, subtraction, addition. Take your pick.
Answer:
x is equal to 2
Step-by-step explanation:
2x+4=8
2x=4
x=2
1) 7000+300+10+3
2) 900,000+90,000+400+40+6
3) 600+80+2
4)30,000+7000+900+10+1
5)3,000,000+900,000+40,000+1,000+400+70+7
6)8000+400+70+4
7)700+70+2
8)30,000+7000+200+80+2
9)700,000+30,000+5,000+800+10+1
10)40,000+6000+400+40+9
11)5000+8000+70+2
12)5,000,000+700,000+50,000+8,000+900+40+5
13)5,000,000+900,000+90,000+8,000+800+90+0
14)300+70+7
15)300,000+20,000+3,000+200+40+8