1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
liubo4ka [24]
3 years ago
13

Find (hog)(-2) h(x) = 3x g(x) = 4x + 1

Mathematics
1 answer:
LenKa [72]3 years ago
3 0

Answer:

h(-2)=-6

g(2)=-7

Step-by-step explanation:

Just plug 2 in for x and solve the equation.

You might be interested in
at a movie theater, tickets for children cost $6.50 each and adult tickets cost $8.75 each. If ticket sales for a group of 35 pe
My name is Ann [436]

Answer:

Idk sorry I really wish I could help

Step-by-step explanation:

7 0
3 years ago
Help me plzzzzzz.,,,,,,,,,,
motikmotik

Answer:

x = 2/3 = 0.667

7 0
3 years ago
Read 2 more answers
76 divided into 6954
zhuklara [117]
91.5 I’m pretty sure
7 0
3 years ago
Read 2 more answers
6. Mrs. Sam buys pencils for $15 per one hundred packs.
Alexxx [7]

Answer:

a.) her loss is 5 dollars

b.) her profit is 10 dollars

c.) she should sell them for $0.15

4 0
3 years ago
The College Board SAT college entrance exam consists of three parts: math, writing and critical reading (The World Almanac 2012)
Wittaler [7]

Answer:

Yes, there is a difference between the population mean for the math scores and the population mean for the writing scores.

Test Statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1 .

Step-by-step explanation:

We are provided with the sample data showing the math and writing scores for a sample of twelve students who took the SAT ;

Let A = Math Scores ,B = Writing Scores  and D = difference between both

So, \mu_A = Population mean for the math scores

       \mu_B = Population mean for the writing scores

 Let \mu_D = Difference between the population mean for the math scores and the population mean for the writing scores.

            <em>  Null Hypothesis, </em>H_0<em> : </em>\mu_A = \mu_B<em>     or   </em>\mu_D<em> = 0 </em>

<em>      Alternate Hypothesis, </em>H_1<em> : </em>\mu_A \neq  \mu_B<em>      or   </em>\mu_D \neq<em> 0</em>

Hence, Test Statistics used here will be;

            \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1    where, Dbar = Bbar - Abar

                                                               s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}}

                                                               n = 12

Student        Math scores (A)          Writing scores (B)         D = B - A

     1                      540                            474                                   -66

     2                      432                           380                                    -52  

     3                      528                           463                                    -65

     4                       574                          612                                      38

     5                       448                          420                                    -28

     6                       502                          526                                    24

     7                       480                           430                                     -50

     8                       499                           459                                   -40

     9                       610                            615                                       5

     10                      572                           541                                      -31

     11                       390                           335                                     -55

     12                      593                           613                                       20  

Now Dbar = Bbar - Abar = 489 - 514 = -25

 Bbar = \frac{\sum B_i}{n} = \frac{474+380+463+612+420+526+430+459+615+541+335+613}{12}  = 489

 Abar =  \frac{\sum A_i}{n} = \frac{540+432+528+574+448+502+480+499+610+572+390+593}{12} = 514

 ∑D_i^{2} = 22600     and  s_D = \sqrt{\frac{\sum D_i^{2}-n*(Dbar)^{2}}{n-1}} = \sqrt{\frac{22600 - 12*(-25)^{2} }{12-1} } = 37.05

So, Test statistics =   \frac{Dbar - \mu_D}{\frac{s_D}{\sqrt{n} } } follows t_n_-  _1

                            = \frac{-25 - 0}{\frac{37.05}{\sqrt{12} } } follows t_1_1   = -2.34

<em>Now at 5% level of significance our t table is giving critical values of -2.201 and 2.201 for two tail test. Since our test statistics doesn't fall between these two values as it is less than -2.201 so we have sufficient evidence to reject null hypothesis as our test statistics fall in the rejection region .</em>

Therefore, we conclude that there is a difference between the population mean for the math scores and the population mean for the writing scores.

8 0
3 years ago
Other questions:
  • What is the ratio of x to y?<br> 3x = 8y
    5·1 answer
  • C(t)= 87.50t + 12.50
    12·1 answer
  • Find the difference: 7 7/8 - 3 1/4=?*
    9·1 answer
  • Angelica is using synthetic division to divide 2x^3-9x^2-21x+10 by x+2 Which answer is correct?
    13·2 answers
  • Write a system of equations with a solution (4,–3)
    9·2 answers
  • Raul drove 3 hours at a rate of 55 miles per hour
    7·1 answer
  • Find the line of reflection if the image of (-5,-2) is each of the following?
    8·2 answers
  • Plz help due tomorrow
    9·1 answer
  • Pls answer the four questions if they are true or false!! <br> Thanks!!
    9·1 answer
  • Question 4 of 10
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!