Answeeeeer:
A. cell
Explanation:
Since A is the smallest in the chart, that would correspond to the cell because thats the smallest out of Tissue, Organ and Organism.
Answer:
Q = 1461.6 J
Explanation:
Given data:
Mass of ice = 36 g
Initial temperature = -20°C
Final temperature = 0°C
Amount of heat absorbed = ?
Solution:
specific heat capacity of ice is 2.03 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 0°C - (-20°C)
ΔT = 20°C
Q = 36 g ×2.03 j/g.°C×20°C
Q = 1461.6 J
no...the atoms will not behave the same
as when temperature is increased, the atoms vibration and kinetic energy will also be increased....they come in excited state...
where as when temperature is reduced ,atoms kinetic energy slows down....
A. Mutualism. This is because both the larvae and the flower are benefited. The larvae is fed, and the flower is pollinated.
Hope this helps!
<h3>
Answer:</h3>
1 x 10^13 stadiums
<h3>
Explanation:</h3>
From the question;
1 x 10^5 people can fill 1 stadium
We are given, 1 x 10^18 atoms of iron
We are required to determine the number of stadiums that 1 x 10^18 atoms of iron would occupy.
We are going to assume that a stadium would occupy a number of atoms equivalent to the number of people.
Therefore;
One stadium = 1 x 10^5 atoms
Then, to find the number of stadiums that will be occupied by 1 x 10^18 atoms;
No. of stadiums = Total number of atoms ÷ Atoms in a single stadium
= 1 x 10^18 atoms ÷ 1 x 10^5 atoms
= 1 x 10^13 stadiums
Therefore, 1 x 10^18 atoms of iron would occupy 1 x 10^13 stadiums