Answer: The solution is a SATURATED solution.
Explanation:
Although most substances are soluble in water, some are more soluble than others,that is , their solubilities differ. SOLUBILITY is a means of comparing the extent to which different solutes can dissolve in a particular solvent at a definite temperature.
From the question above, when water was added to the sodium acetate in the flask, SOME of the chemical dissolved into the water, meaning that some remained undissolved. This is because a given volume of water can only dissolve a certain amount of chemical in it at room temperature. If more chemical is added to such a solution, the chemical will remain undissolved. Such a chemical solution is said to be a SATURATED SOLUTION.
A saturated solution of a solute at a particular temperature is on which contains as much solute as it can dissolve at that temperature in the presence of undissolved solute particles.
Unsaturated solution is a type of solution that dissolves all its solutes with no presence of undissolved solute.
Supersaturated solution is one which contains more of the solute than it can normally hold at that temperature. It is an unstable solution which crystallizes out when disturbed.
Answer:
Polyhydroxyl alcohols
Explanation:
Whenever we have several C-OH bonds, we have a polyhydroxyl alcohol. For example, if we have just one alcohol group, that is, an R-OH group, then the naming is simple, say, we have EtOH, it's ethanol.
The problem becomes more complicated when we have several hydroxyl groups present in the alcohol. Let's say we have an ethane molecule and we replace the hydrogen atoms of carbon 1 and 2 with hydroxyl groups. In that case, we have 1,2-ethanediol. Similarly, we can have triols etc.
That said, we have poly (several) hydroxyl groups and we can generalize this to having polyhydroxyl alcohols.
Materials<span> and their </span>properties<span>: </span>compounds like<span> sodium chloride - an interactive educational resource for 11 to 14 year olds. ... Elements are substances (</span>like<span> hydrogen and oxygen) that can't be split into simpler substances. ... For </span>each<span> statement, decide whether it describes a mixture or a </span>compound<span> and check the box.</span>
Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
Answer:
Please find the answer to the question below
Explanation:
In chemistry, the following mathematical formula is used to calculate the number of moles contained by a substance:
mole = mass of substance (g)/molar mass of substance (g/mol)
Molar mass of salicylic acid (C7H6O3) = 12(7) + 1(6) + 16(3)
= 84 + 6 + 48
= 138g/mol
Mass = 5.50grams
mole = 5.5/138
mole = 0.039
Approximately, the number of moles of 5.5grams of salicylic acid is 0.04moles. This is in accordance with the mole value (0.04) given in this question.