Answer:


= 2 × 625 – 5 × 125 + 25 + 3 × 5 + 2
=1250 – 625 + 25 + 15 +2
= 1292 – 625
= 667
Answer:
Part A:
-Minimum: 10
-Q1: 17.5
-Median: 30
-Q3: 42.5
-Maximum: 50
Step-by-step explanation:
Part B: IQR= 25
This shows that the data varies for 25 different numbers. That HALF of the data is between 25 numbers.
Part C: Using a box-and-whisker plot you can interpret the different values. Minimum is the first dot (10), connected to the first line (Q1 which is 17.5), connected by a box to the median (30), connected by a box to the third line (Q3 which is 42.5), connected to the last dot which is the maximum (50). And IQR is Q3-Q1, so 42.5-17.5 which is 25.
Answer:
B
Step-by-step explanation:
Answer:
Step-by-step explanation:
sure, ill check it out
I believe the given limit is
![\displaystyle \lim_{x\to\infty} \bigg(\sqrt[3]{3x^3+3x^2+x-1} - \sqrt[3]{3x^3-x^2+1}\bigg)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%5Cto%5Cinfty%7D%20%5Cbigg%28%5Csqrt%5B3%5D%7B3x%5E3%2B3x%5E2%2Bx-1%7D%20-%20%5Csqrt%5B3%5D%7B3x%5E3-x%5E2%2B1%7D%5Cbigg%29)
Let

Now rewrite the expression as a difference of cubes:

Then

The limit is then equivalent to

From each remaining cube root expression, remove the cubic terms:



Now that we see each term in the denominator has a factor of <em>x</em> ², we can eliminate it :


As <em>x</em> goes to infinity, each of the 1/<em>x</em> ⁿ terms converge to 0, leaving us with the overall limit,
