Answer:
1.8m
Explanation:
Let the Elastics of the steel ASTM-36 
The strain of the bar when subjected to 150 MPa is

Therefore, if the bar elongates by 1.35 mm, then the original length L would be:

or 1.8m
The height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
<h3>Pressure and temperature at equilibrium </h3>
The relationship between pressure and temperature can be used to determine the height risen by the water.

where;
- V₁ = AL
- V₂ = A(L - y)
- P₁ = Pa
- P₂ = Pa + ρgh
- T₁ = 20⁰C = 293 K
- T₂ = 10⁰ C = 283 k

Thus, the height risen by water in the bell after enough time has passed for the air to reach thermal equilibrium is 3.8 m.
The complete question is below:
A diving bell is a 4.2 m -tall cylinder closed at the upper end but open at the lower end. The temperature of the air in the bell is 20 °C. The bell is lowered into the ocean until its lower end is 100 m deep. The temperature at that depth is 10°C. How high does the water rise in the bell after enough time has passed for the air to reach thermal equilibrium?
Learn more about thermal equilibrium here: brainly.com/question/9459470
#SPJ4
Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.