Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.
Answer:
Hope this helps you find the answer
Explanation:
The proteins, lipids, and polysaccharides that make up most of the food we eat must be broken down into smaller molecules before our cells can use them—either as a source of energy or as building blocks for other molecules.
Answer:
The magnitude of gravitational force between two masses is
.
Explanation:
Given that,
Mass of first lead ball, 
Mass of the other lead ball, 
The center of a large ball is separated by 0.057 m from the center of a small ball, r = 0.057 m
We need to find the magnitude of the gravitational force between the masses. It is given by the formula of the gravitational force. It is given by :

So, the magnitude of gravitational force between two masses is
. Hence, this is the required solution.
Answer:
The air in the soccer ball in cold weather will decrease slightly in size and it becomes flat. The air in the soccer ball in hot weather will seem flat because the low preasure leads to lower bounce in the ball.
The metal door frame in cold weather contracts and the wood contracts more in the winter. The metal door frame in hot weather thermal blowing can occur on the outer surface of the metal door frame. Hopefully that is what you were looking for have a good day.