Answer:
0.075 T
Explanation:
When a current-carrying wire is immersed in a region with magnetic field, the wire experiences a force, given by

where
I is the current in the wire
L is the length of the wire
B is the strength of the magnetic field
is the angle between the direction of I and B
In this problem we have:
L = 0.65 m is the length of the wire
I = 8.2 A is the current in the wire
F = 0.40 N is the force experienced by the wire
since the current is at right angle with the magnetic field
Solving the formula for B, we find the strength of the magnetic field:

He discovered several species of finches that varied from island to island and it helped him make his theory of natural selection.
hope this helps !
The answer would most likely be A since obviously gravity weighs things down which helps the every other masses stay settled in place
Answer:

Explanation:
As given point p is equidistant from both the charges
It must be in the middle of both the charges
Assuming all 3 points lie on the same line
Electric Field due a charge q at a point ,distance r away

Where
- q is the charge
- r is the distance
-
is the permittivity of medium
Let electric field due to charge q be F1 and -q be F2
I is the distance of P from q and also from charge -q
⇒
F1
F2
⇒
F1+F2=
4000 seconds
Explanation:
speed = distance / time
0.0004m/s = 1.6m / time
Subject time
time = 1.6 / 0.0004
time = 4000 seconds.
Hope this helps. Mark as brainliest if possible. tks