Answer:
the answer is A because
from tate 4 dozen is 48 and from joe the sixth multiple of eight is 48
The car travels a distance <em>d</em> from rest with acceleration <em>a</em> after time <em>t</em> of
<em>d</em> = 1/2 <em>a</em> <em>t</em>²
It covers 69 m with 2.8 m/s² acceleration, so that
69 m = 1/2 (2.8 m/s²) <em>t</em>²
<em>t</em>² = 2 (69 m) / (2.8 m/s²)
<em>t</em> ≈ 7.02 s
where we take the positive square root because we're talking about time *after* the car begins accelerating.
Answer:
60m/s
Explanation:
initial energy = final energy
g.p.e = k.e
k.e = 0.5 × mass × velocity²
g.p.e = 990000J as per Question
990000Nm = 0.5 × 550 × V²
V² = 3600
V = 60m/s
Every cell has chromosomes in its nucleus. In a human cell,
there are 26 of them. AND ... lined up on every chromosome
are thousands and thousands of GENES. Those carry the
instructions for what kind of organ or bone or tissue or hair
this cell will be used to build, how the structure will work, how
tall you will be, what color your eyes will be, how deep your
voice will be, and what illnesses you will have.
Every cell has the complete set of instructions in it. In the past
several years, we have just started to be able to read them, and
extraordinary progress has been made. There's an awful long way
still left to go.
First, we must find the vertical distance traveled upwards by the ball due to the throw. For this, we will use the formula:
2as = v² - u²
Because the final velocity v is 0 in such cases
s = -u²/2a; because both u and a are downwards, the negative sign cancels
s = 14.5² / 2*9.81
s = 10.72 meters
Next, to find the time taken to reach the ground, we need the height above the ground. This is:
45 + 10.72 = 55.72 m
We will use the formula
s = ut + 0.5at²
to find the time taken with the initial velocity u = 0.
55.72 = 0.5 * 9.81 * t²
t = 3.37 seconds