Answer:
4.2 m
Explanation:
Note: If energy is conserved, i.e no work is done against friction
Work input = work output.
Work output = Force output × distance,
Work input = force input × distance moved moved.
Therefore,
input force×distance moved = output force × distance moved........................Equation 1
Given: input force = 80 N, output force = 240 N, output distance = 1.4 m
Let input distance = d
Substitute into equation 1
80×d = 240×1.4
80d = 336
d = 336/80
d = 4.2 m.
Thus the rope around the pulley must be pulled 4.2 m
The electric force between the two particles are calculated through the equation,
F = kQ₁Q₂ / d²
where F is the force, k is a constant called Coulomb's law constant, Q₁ and Q₂ are the charges, and d is the distance. This equation is called the Coulomb's law.
It can be seen from the equation above that the electric forces between the objects are majorly affected by the substance's charges and distance.
The answer to this item is therefore letter A.
For an ideal transformer power loss is assumed to be zero
i.e. the power in primary coil due to input voltage must be equal to power in secondary coil due to output voltage
this can be written in form of equation

here we know that


![i_1 = 10 A{/tex]now we will use above equation[tex]140*3.5 = 10 * V_1](https://tex.z-dn.net/?f=i_1%20%3D%2010%20A%7B%2Ftex%5D%3C%2Fp%3E%3Cp%3Enow%20we%20will%20use%20above%20equation%3C%2Fp%3E%3Cp%3E%5Btex%5D140%2A3.5%20%3D%2010%20%2A%20V_1)

So primary coil voltage is 49 Volts
I think the answer is c. but I think it depends on how many zebras you have
Answer:
because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.