Explanation:
Electromagnetic waves are the waves which are created as the result of the electrical waves which are perpendicular to each other and also perpendicular to the direction of propagation.
Electromagnetic spectrum is range of the frequencies and their respective wavelengths of the various type of the electromagnetic radiation.
In order of the increasing frequency and the photon energy and the decreasing wavelength the spectrum are:
radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, X-rays and gamma rays.
The energy of the radio waves photons is the lowest of all the other waves in the electromagnetic spectrum.
Also, 
Where,
h is Plank's constant having value 
Thus, energy is directly proportional to the frequency. The radio waves have the lowest frequency.
Assuming north as positive direction, the initial and final velocities of the ball are:

(with negative sign since it is due south)

the time taken is

, so the average acceleration of the ball is given by

And the positive sign tells us the direction of the acceleration is north.
Answer: Hi!
A neuron is a basic working unit of the brain. Neurons are special cells designed to transfer information to other nerve, muscle, or gland cells. They are pretty cool - looking too! (A slightly irregular circular shape with branches reaching out from all sides.) A neuron is a nerve cell. Nerve cells are the way of communication in the nervous system.
Hope this helps!
Answer:
You've probably noticed that static electricity is more noticeable during the winter months. This is because the air is very dry. In the summer, the humidity and moisture in the air help electrons move more quickly, which makes it harder to build up a big static charge.
Explanation:
Answer:
Vf = 69.61 m/s
Explanation:
We will use the third equation of motion to solve this problem:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height of cliff = 247 m
Vf = final velocity = ?
Vi = initial velocity = 0 m/s (boulder breaks loose from rest)
Therefore,

<u>Vf = 69.61 m/s</u>