Answer:

Explanation:
Given
,
,
,
The tension of the spring is



The force in the spring is equal to centripetal force so


But Fc is also
Fc=KxΔr

Replacing



total distance is

Answer:
All i kno is that that kid ain't gonna be ok
Explanation:
if u tell me how to do it ill do it
Answer:
7229 N
Explanation:
The gravitational force between the Death Star and the Millenium Falcon is given by:

where
is the gravitational constant
is the mass of the Death Star
is the mass of the Millennium Falcon
is the radius of the Death Star
Substituting numbers into the equation, we find the force

Answer:
The equilibrium position will shift towards the left hand side or reactants side
Explanation:
Decreasing the volume (increasing the pressure) of the system will shift the equilibrium position towards the lefthand side or reactants side. This is because, decreasing the volume (increasing the pressure) implies shifting the equilibrium position towards the side having the least number of moles.
There are two moles of reactants and a total of three moles of products(total). Hence decreasing the volume and increasing the pressure of the gas phase reaction will shift the equilibrium position towards the lefthand side.