1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex787 [66]
3 years ago
10

What is the y-intercept of the line shown?

Mathematics
1 answer:
Marta_Voda [28]3 years ago
4 0

Answer:

y-intercept = 3

Step-by-step explanation:

value that's on the y - axis

You might be interested in
Find the area of the figure shown below and choose the appropriate result.
Alisiya [41]

Answer:

6cm

Step-by-step explanation:

14

8 0
3 years ago
9= 2/3 (x+12) plz help
avanturin [10]

Answer:  x=3/2  

Step-by-step explanation:

Multiply the parentheses by 2/3.  9=2/3x+8.

Multiply  both sides by 3 .  27=2x+24

Move the term. When moved to the left side it changes from positive to a negative.  -2x=24-27.

-2x=-3

Divide both sides by -2

x=3/2   (x=1 1/2, x=1.5)

5 0
3 years ago
If the area of a triangular garden is 156 sq ft, and the base of this garden is 13 feet wide, what is the height?
Ilia_Sergeevich [38]

Answer:

height is =area  dived by base

Step-by-step explanation:

156 divide 13 is 12

so the answer of height is 12.......hope u understand dear

5 0
3 years ago
Read 2 more answers
1. What is a perfect square? 2. What is the square root of 4x²? 3. What is the square root of 25? 4. Factor 4x² + 20x + 25.
Ulleksa [173]

Answer:

Step-by-step explanation:

1) A perfect square is a whole number which is a product of a smaller whole number and itself. Examples of perfect squares are

4(2 × 2)

9(3 × 3)

16(4 × 4)

25(5 × 5)

36(6 × 6)

2) Square root of 4x² is 2x(product of square root of 4 and square root of x²)

3) square of 25 is 5

4) 4x² + 20x + 25

The general formula for solving quadratic equations is expressed as

x = [- b ± √(b² - 4ac)]/2a

From the equation given,

a = 4

b = 20

c = 25

Therefore,

x = [- 20 ± √(20² - 4 × 4 × 25)]/2 × 4

x = [- 20 ± √(400 - 400)]/8

x = [- 20 ± 0]/8

x = - 20/8

x = - 2.5

3 0
3 years ago
Use this list of Basic Taylor Series and the identity sin2θ= 1 2 (1−cos(2θ)) to find the Taylor Series for f(x) = sin2(3x) based
notsponge [240]

Answer:

The Taylor series for sin^2(3 x) = - \sum_{n=1}^{\infty} \frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}, the first three non-zero terms are 9x^{2} -27x^{4}+\frac{162}{5}x^{6} and the interval of convergence is ( -\infty, \infty )

Step-by-step explanation:

<u>These are the steps to find the Taylor series for the function</u> sin^2(3 x)

  1. Use the trigonometric identity:

sin^{2}(x)=\frac{1}{2}*(1-cos(2x))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(2(3x)))\\ sin^{2}(3x)=\frac{1}{2}*(1-cos(6x))

   2. The Taylor series of cos(x)

cos(y) = \sum_{n=0}^{\infty}\frac{-1^{n}y^{2n}}{(2n)!}

Substituting y=6x we have:

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

   3. Find the Taylor series for sin^2(3x)

sin^{2}(3x)=\frac{1}{2}*(1-cos(6x)) (1)

cos(6x) = \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!} (2)

Substituting (2) in (1) we have:

\frac{1}{2} (1-\sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!})\\ \frac{1}{2}-\frac{1}{2} \sum_{n=0}^{\infty}\frac{-1^{n}6^{2n}x^{2n}}{(2n)!}

Bring the factor \frac{1}{2} inside the sum

\frac{6^{2n}}{2}=9^{n}2^{2n-1} \\ (-1^{n})(9^{n})=(-9^{n} )

\frac{1}{2}-\sum_{n=0}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

Extract the term for n=0 from the sum:

\frac{1}{2}-\sum_{n=0}^{0}\frac{-9^{0}2^{2*0-1}x^{2*0}}{(2*0)!}-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \frac{1}{2} -\frac{1}{2} -\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ 0-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ sin^{2}(3x)=-\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}

<u>To find the first three non-zero terms you need to replace n=3 into the sum</u>

sin^{2}(3x)=\sum_{n=1}^{\infty}\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}\\ \sum_{n=1}^{3}\frac{-9^{3}2^{2*3-1}x^{2*3}}{(2*3)!} = 9x^{2} -27x^{4}+\frac{162}{5}x^{6}

<u>To find the interval on which the series converges you need to use the Ratio Test that says</u>

For the power series centered at x=a

P(x)=C_{0}+C_{1}(x-a)+C_{2}(x-a)^{2}+...+ C_{n}(x-a)^{n}+...,

suppose that \lim_{n \to \infty} |\frac{C_{n}}{C_{n+1}}| = R.. Then

  • If R=\infty, the the series converges for all x
  • If 0 then the series converges for all |x-a|
  • If R=0, the the series converges only for x=a

So we need to evaluate this limit:

\lim_{n \to \infty} |\frac{\frac{-9^{n}2^{2n-1}x^{2n}}{(2n)!}}{\frac{-9^{n+1}2^{2*(n+1)-1}x^{2*(n+1)}}{(2*(2n+1))!}} |

Simplifying we have:

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |

Next we need to evaluate the limit

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } |\\ \frac{1}{18x^{2} } \lim_{n \to \infty} |-(n+1)(2n+1)}|}

-(n+1)(2n+1) is negative when n -> ∞. Therefore |-(n+1)(2n+1)}|=2n^{2}+3n+1

You can use this infinity property \lim_{x \to \infty} (ax^{n}+...+bx+c) = \infty when a>0 and n is even. So

\lim_{n \to \infty} |-\frac{(n+1)(2n+1)}{18x^{2} } | \\ \frac{1}{18x^{2}} \lim_{n \to \infty} 2n^{2}+3n+1=\infty

Because this limit is ∞ the radius of converge is ∞ and the interval of converge is ( -\infty, \infty ).

6 0
3 years ago
Other questions:
  • 14+6 :)) ILL GIVE BRAINLIEST ITS 100 POINTS :))
    11·1 answer
  • Is one side of a rectangular fish tank best represented by a point, line, plane, or ray?
    6·1 answer
  • Which of the following are concidered skew lines?
    10·1 answer
  • How many three letter permutations are possible from the letters in the word ACTION? ("ACT" is not the same as "CAT" so order is
    14·1 answer
  • -12 - 6p - (-2) simplify
    9·2 answers
  • If three quarters of a certain number is 48 find the number​
    14·1 answer
  • What is the cost of 2 bags of sugar if 3 bags cost $5.25 and the unit price for each bag is the same.
    10·1 answer
  • Y=-|x+3| domain and range
    9·1 answer
  • Is this right??? Yes or no
    10·1 answer
  • Graph f(x)=2ˣ−1 and g(x)=−x+5 on the same coordinate plane.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!