1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
charle [14.2K]
3 years ago
12

You are trying to electroplate a new superconducting ceramic-metal onto a circuit board. The rate at which a plating will be uns

uccessful is about 12 per hour. You implement a new deposition process. What is the probability that you find 4 or fewer unsuccessful plates in one hour?
Mathematics
1 answer:
WARRIOR [948]3 years ago
5 0

Answer:

The probability of 4 or fewer unsuccessful plates in one hour is 0.00752.

Step-by-step explanation:

Let <em>X</em> = number of plates that are unsuccessful.

The expected number of unsuccessful plates per hour is, <em>λ</em> = 12.

The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 12.

The probability function of a Poisson distribution is:

P(X=X)=\frac{e^{-\lambda}\lambda^{x}}{x!};\ x=0, 1, 2, ...

Compute the probability of 4 or fewer unsuccessful plates in one hour as follows:

P (X ≤ 4) = P (X = 0) + P (X = 1) + P (X = 2) + P (X = 3) + P (X = 4)

              =\frac{e^{-12}12^{0}}{0!}+\frac{e^{-12}12^{1}}{1!}+\frac{e^{-12}12^{2}}{2!}+\frac{e^{-12}12^{3}}{3!}+\frac{e^{-12}12^{4}}{4!}\\=0.0000+0.0000+0.00044+0.00177+0.00531\\=0.00752

Thus, the probability of 4 or fewer unsuccessful plates in one hour is 0.00752.

You might be interested in
Look at the image to find the question
VashaNatasha [74]

Answer:

yes, the volume = 16 ft^3

6 0
3 years ago
Suppose a 5x8 coefficient matrix for a system has pivot columns. Is the system​ consistent? Why and Why not?
Lyrx [107]

Step-by-step explanation:

All the 5 rows of the coefficient matrix (since it is of order 5×8) will have a pivot position. The augmented matrix obtained by adding a last column of constant terms to the 8 columns of the coefficient matrix will have nine columns and will not have a row of the form [0 0 0 0 0 0 0 0 1]. So the system is consistent.

7 0
3 years ago
Find the f^-1(x) and it’s domain
borishaifa [10]

Answer:

f^{-1}(x) = (x + 8)^2

x \ge -8

Step-by-step explanation:

Given

f(x) = \sqrt x - 8

Solving (a): f^{-1}(x)

We have:

f(x) = \sqrt x - 8

Express f(x) as y

y = \sqrt x - 8

Swap x and y

x = \sqrt y - 8

Add 8 to both\ sides

x + 8 = \sqrt y - 8 + 8

x + 8 = \sqrt y

Square both sides

(x + 8)^2 = y

Rewrite as:

y = (x + 8)^2

Express y as: f^{-1}(x)

f^{-1}(x) = (x + 8)^2

To determine the domain, we have:

The original function is f(x) = \sqrt x - 8

The range of this is: f(x) \ge -8

The domain of the inverse function is the range of the original function.

<em>Hence, the domain is:</em>

x \ge -8

3 0
3 years ago
A B R and P are four points on a circle with centre 0. A O R and C are four points on a different circle. The two circles inters
Slav-nsk [51]

Answer:

x° = ∠OBR = ∠ABC (base angles of a cyclic isosceles trapezoid)

Step-by-step explanation:

APRB form a cyclic trapezoid

∠APO  = x° (Base angle of an isosceles triangle)

∠OPR  = ∠ORP (Base angle of an isosceles triangle)

∠ORB = ∠OBR (Base angle of an isosceles triangle)

∠APO + ∠OPR + ∠OBR = 180° (Sum of opposite angles in a cyclic quadrilateral)

Similarly;

∠ORB + ∠ORP + x°  = 180°

Since ∠APO = x° ∠ORB = ∠OBR and ∠OPR  = ∠ORP we put

We also have;

∠OPR = ∠AOP = ∠BOR (Alternate interior angles of parallel lines)

Hence 2·x° + ∠AOP = 180° (Sum of angles in a triangle) = 2·∠OBR + ∠BOR

Therefore, 2·x° = 2·∠OBR, x° = ∠OBR = ∠ABC.

6 0
3 years ago
What is the determinant of <br><br>15<br><br>18<br><br>154
IgorC [24]

Answer:

The determinant is 15.

Step-by-step explanation:

You need to calculate the determinant of the given matrix.

1. Subtract column 3 multiplied by 3 from column 1 (C1=C1−(3)C3):

\left[\begin{array}{ccc}-25&-23&9\\0&3&1\\-5&5&3\end{array}\right]

2. Subtract column 3 multiplied by 3 from column 2 (C2=C2−(3)C3):

\left[\begin{array}{ccc}-25&-23&9\\0&0&1\\-5&-4&3\end{array}\right]

3. Expand along the row 2: (See attached picture).

We get that the answer is 15. The determinant is 15.

6 0
3 years ago
Other questions:
  • What is 3/5 equivalent too ?
    6·2 answers
  • Why is it important to rename 4 1/4 if you subtract 3/4 from it
    9·1 answer
  • Solve for the given variable:<br> 14=63n
    10·1 answer
  • On a number line, a number, b, is located the same distance from 0 as another number, a, but in the opposite direction. The numb
    14·1 answer
  • Solve this equation. 5n+7=7(n+1)-2n
    15·2 answers
  • What is a non translation and a translation​
    8·2 answers
  • On a coordinate plane, a straight line with a positive slope begins at point (0, 50) and ends at point (5.5, 600).
    7·2 answers
  • I need help on this lol
    5·2 answers
  • Answer this, i need help
    15·2 answers
  • Simplify (2x^3)^4<br><br>Answer it step by step ​
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!