Answer:
e. 1.2 x 10²³
Explanation:
According to the problem, The current equation is given by:

Here time is in seconds.
Consider at t=0 s the current starts to flow due to battery and the current stops when the time t tends to infinite.
The relation between current and number of charge carriers is:

Here the limits of integration is from 0 to infinite. So,


q = 1.90 x 10⁴ C
Consider N be the total number of charge carriers. So,
q = N e
Here e is electronic charge and its value is 1.69 x 10⁻¹⁹ C.
N = q/e
Substitute the suitable values in the above equation.

N = 1.2 x 10²³
Well.....
Gravity from the sun pulls the planets torward it while inertia pulls it outward....but I guess that would be why it orbits sorry if this doesn't help but uh
Answer:
7.5 m/s
Explanation:
We can find its velocity when it reaches the buoy by applying one of Newton's equations of motion:

where v = final velocity
u = initial velocity
a = acceleration
s = distance traveled
From the question:
u = 28 m/s
a = -4 
s = 91 m
Therefore:

The velocity of the boat when it reaches the buoy is 7.5 m/s.
Answer:
the watt is the unit of power or radiant flax
Answer:
The frequency of infrared wave is 35.385 GHz
Explanation:
Given data:
Wavelength of infrared light = 8.45 mm = 8.45 x
m
Velocity of infrared light = 2.99 x
m/s
To find: frequency of the infrared wave = ?
We know that the wavelength and frequency are inversely proportional and the formula to derive frequency with velocity and wavelength is:
c = μλ, where
c is velocity of light
μ is frequency of light
λ is wavelength of light
Hence the frequency of light μ = c/λ
= 
=
x

= 35.385 x
Hz (since 1
= 1 Hz)
= 35.385 GHz