Answer:
Graphing the momentum against the change in moment yields a linear relationship.
Explanation:
This is an impulse experiment,
I = ∫ F .dt
where the force and time of the collision are measured, therefore if we assume an average force the integral reduces to
I = F t
Furthermore, the momentum is equal to the change in moment of the ball, this change in moment can be found using the energy relations measuring the height of the ball and calculating its speed, in the two intervals for the descent and for the exit, possibly the heights are different so the moment change is different from zero.
Starting point. Higher
Em₀ = U = mgh
Lower end point, just before hitting the scale
= K = ½ m v²
in the path in the air there is no friction
Em₀ = Em_{f}
m g h = ½ m v²
v =
this height is different for the descent and ascent of the ball, so we have two moments
Δp =
- p₀
Δp = m (v_{f} -v₀)
therefore we have the relationship
I = Δp
Graphing the momentum against the change in moment yields a linear relationship.
The cat's kinetic energy is
(1/2) x (the cat's mass in kg) x (25 m²/sec²).
The unit is [joules] .
Answer:
v = 9.936 m/s
Explanation:
given,
height of cliff = 40 m
speed of sound = 343 m/s
assuming that time to reach the sound to the player = 3 s
now,
time taken to fall of ball


t = 2.857 s
distance
d = v x t
d = v x 2.875
time traveled by the sound before reaching the player



distance traveled by the wave in this time'
r = 0.143 x 343
r= 49.05 m
now,
we know.
d² + h² = r²
d² + 40² = 49.05²
d =28.387 m
v x 2.875=28.387 m
v = 9.936 m/s
As we know that acceleration due to gravity is given by

here we know that
g = 3.60 m/s^2
M = ?

now we have


so above is the mass of Mars
Answer:
A. They can transfer energy through a vacuum
C. They vibrate in two directions that are perpendicular to each other
D. They radiate outward in all directions
Explanation: