Answer:
Explanation:
1. False
The force you apply on crate is equal and opposite to the force that crate applies on you by Newton's third law of motion.
The force must over come the static frictional force between the crate and the floor.
2. True
The object can move along another direction than the direction of net force. For example, when a car slows down, the net force is opposite to the direction of motion.
3. True
An object moving at constant velocity has zero net force acting on it.
4. False
An object at rest has forces acting on it but the summation of all the forces is zero i.e. the net force is zero.
What Kepler's constant ? ? ! ?
The only constant in Kepler's laws is in the third one, where it says something to the
effect that (square of a body's period) / (cube of its distance from the central body)
is a constant.
That means it's a constant for multiple little ones orbiting the same central body.
But it's not the same constant for other central bodies.
It's one constant for the planets, asteroids, and comets orbiting the sun.
It's a different constant for the moon, TV satellites, weather satellites,
and military satellites orbiting the Earth.
<span>Germanium
To determine which melts first, convert their melting temperatures so they're both expressed on same scale. It doesn't matter what scale you use, Kelvin, Celsius, of Fahrenheit. Just as long as it's the same scale for everything. Since we already have one substance expressed in Kelvin and since it's easy to convert from Celsius to Kelvin, I'll use Kelvin. So convert the melting point from Celsius to Kelvin for Gold by adding 273.15
1064 + 273.15 = 1337.15 K
So Germanium melts at 1210K and Gold melts at 1337.15K. Germanium has the lower melting point, so it melts first.</span>
Answer:
Prokaryotes are organisms that consist of a single prokaryotic cell. Eukaryotic cells are found in plants, animals, fungi, and protists. They range from 10–100 μm in diameter, and their DNA is contained within a membrane-bound nucleus. Eukaryotes are organisms containing eukaryotic cells.