Answer:
decibels (dB)
Explanation:
The sound intensity level is a quantity derived from the sound intensity.
The intensity of a wave is defined as the power of the source of the wave divided by the area through which the power of the wave is spread, mathematically:

where
P is the power of the source
is the surface area over which the wave spreads (assuming that the wave propagates in all directions, it corresponds to the surface area of a sphere of radius
, where r is the distance between the source of the wave and the observer)
For sound waves, the intensity is often expressed using another unit, called decibel (dB), defined as follows:

where
is the sound intensity level in decibels
I is the intensity of the sound wave
is the threshold intensity of a sound that a person can normally hear.
Answer:
a

b

Explanation:
From the question we are told that
The child's weight is 
The length of the sliding surface of the playground is 
The coefficient of friction is 
The angle is 
The initial speed is 
Generally the normal force acting on the child is mathematically represented as
=> 
Note 
Generally the frictional force between the slide and the child is

Generally the resultant force acting on the child due to her weight and the frictional force is mathematically represented as

Here F is the resultant force and it is represented as 
=> 
=> 
=> 
=>
So

=> 
Generally the heat energy generated by the frictional force which equivalent tot the workdone by the frictional force is mathematically represented as

=> 
=> 
Generally from kinematic equation we have that

=> 
=> 
=> 
According to Boyle’s law, For a fixed amount of an ideal gas kept at a fixed temperature, P (pressure) and V (volume) are inversely proportional.
Therefore,

Given
,
and
.
Thus,

Answer:
When two forces acting on an object are equal in size but act in opposite directions, we say that they are balanced forces.
Explanation:
Answer:
The right answer is:
(a) 63.83 kg
(b) 0.725 m/s
Explanation:
The given query seems to be incomplete. Below is the attachment of the full question is attached.
The given values are:
T = 3 sec
k = 280 N/m
(a)
The mass of the string will be:
⇒ 
or,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
(b)
The speed of the string will be:
⇒ 
then,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
⇒ 