1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Komok [63]
3 years ago
5

Summary & pratice sheets.

Mathematics
2 answers:
kicyunya [14]3 years ago
6 0

Answer:

OMG THANKS FOR THE FREE POINTS!!!!!

Step-by-step explanation:

can have brainliest too??????  

mel-nik [20]3 years ago
4 0

Answer:

Yay

Step-by-step explanation:

You might be interested in
How much further up the wall does the ladder in figure 2 reach than
ASHA 777 [7]

The ladder in figure 2 reaches 3.2 feet further up than the ladder in figure 1.

Step-by-step explanation:

Step 1:

In both the given figures, the ladder, the wall and the floor form a right-angled triangle. The floor is the adjacent side, the wall is the opposite side and the ladder is the hypotenuse.

According to the Pythagorean theorem,

a^{2}+b^{2}=c^{2}, where c is the length of the hypotenuse while a and b are the lengths of the other two sides.

Step 2:

For the ladder in figure 1, assume the distance from the floor to the ladder's top is x feet. So a = x, b = 8 and c = 10 (hypotenuse).

a^{2}+b^{2}=c^{2}, x^{2}+8^{2}=10^{2}, x^{2}=100-64=36, x=\sqrt{36}=6 \text { feet }.

So the distance between the floor and the ladder's top is 6 feet.

Step 3:

For the ladder in figure 2, assume the distance between the floor and the ladder's top is y feet. So a = y, b = 4 and c = 10 (hypotenuse).

a^{2}+b^{2}=c^{2}, y^{2}+4^{2}=10^{2}, y^{2}=100-16=48, x=\sqrt{84}=9.1651 \text { feet }.

So the distance between the floor and the ladder's top is 9.1651 feet.

Step 4:

The difference in heights = The wall height in figure 2 - the wall height in figure 1.

The difference in heights = 9.1651 feet - 6 feet = 3.1651 feet.

Rounding this off to the nearest tenth of a foot, we get 3.2 feet.

4 0
3 years ago
The cheerleader section is on the basketball court. Each row requires a section of floor that is 1 ¾ yards by 3 ⅓ yards. How man
Lady_Fox [76]

Answer:

The area of the floor space is equal to 5.83 sq yards.

Step-by-step explanation:

Given that,

Each row requires a section of floor that is 1 ¾ yards by 3 ⅓ yards.

We need to find how many square yards of floor space are taken up by one row of cheerleaders.

We know that, the area of a rectangle is given by :

A = lb

So,

A=\dfrac{7}{4}\times \dfrac{10}{3}\\\\A=5.83\ yards^2

So, the area of the floor space is equal to 5.83 sq yards.

5 0
3 years ago
Margaret is playing a game with a standard deck of 52 cards which contains 4 jacks. The first player to select a jack gets to st
Lelechka [254]

Answer:

Step-by-step explanation:  The theoretical probability that Margaret, when choosing first, will choose a jack, is 1/13.

welcomeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

5 0
3 years ago
Read 2 more answers
You score 5 goals. Your friend scores
EastWind [94]

Answer:

11 goals

Step-by-step explanation:

Me: 5 goals

Friends: 5+1 = 6 goals

Me + friends = 5 goals + 6 goals = 11 goals

7 0
1 year ago
Read 2 more answers
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Other questions:
  • David is making rice for his guests based on a recipe that requires rice, water, and a special blend of spice, where the rice-to
    11·2 answers
  • Rounded to the nearest hundredth , what is the positive solution to the quadratic equation 0=2x^2+3x-8
    6·1 answer
  • Help me solve these problem
    10·1 answer
  • You mix soda water, fruit punch concentrate, and ginger ale in the ratio of 1 : 2 : 5 to make fruit punch. How many pints of eac
    13·1 answer
  • A survey was sent out to compare the proportion of adults who use their car horns when driving for two age populations (1=younge
    8·1 answer
  • Please help!!!
    12·1 answer
  • Identify the terminal point for a 45° angle in a unit circle.
    13·1 answer
  • I need helpppp ASAP​
    10·2 answers
  • IT TUVW is reflected across the line y = .x, what are the coordinates of V'?
    6·1 answer
  • Reflecting<br><br> Gcse foundation
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!