Because this is a positive parabola, it opens upwards, like a cup, and the vertex dictates what the minimum value of the function is. In order to determine the vertex, I recommend completing the square. Do that by first setting the function equal to 0 and then moving the 9 to the other side by subtraction. So far:

. Now, to complete the square, take half the linear term, square it, and add that number to both sides. Our linear term is 6. Half of 6 is 3 and 3 squared is 9. So add 9 to both sides.

. The right side reduces to 0, and the left side simplifies to the perfect square binomial we created while completing this process.

. Move the 0 back over and the vertex is clear now. It is (-3, 0). Therefore, 0 is the minimum point on your graph. The first choice above is the one you want.
Answer:
N=-5
Step-by-step explanation:
Answer:
b = 87°
Step-by-step explanation:
In order to answer this question, we need to utilise an important angle fact which is <em>angles in a quadrilateral add up to 360° </em>
Using the information we can set up an equation to find the value of b
→ Form equation
63 + 140 + 70 + b = 360
→ Simplify
273 + b = 360
→ Minus 273 from both sides isolate b
b = 87°