To bring something to a stop the same force that was applied to speed it up can be used to stop it. If a greater force is used it will stop quicker.
Answer:
a) FE = 0.764FG
b) a = 2.30 m/s^2
Explanation:
a) To compare the gravitational and electric force over the particle you calculate the following ratio:
(1)
FE: electric force
FG: gravitational force
q: charge of the particle = 1.6*10^-19 C
g: gravitational acceleration = 9.8 m/s^2
E: electric field = 103N/C
m: mass of the particle = 2.2*10^-15 g = 2.2*10^-18 kg
You replace the values of all parameters in the equation (1):

Then, the gravitational force is 0.764 times the electric force on the particle
b)
The acceleration of the particle is obtained by using the second Newton law:

you replace the values of all variables:

hence, the acceleration of the particle is 2.30m/s^2, the minus sign means that the particle moves downward.
Answer:
the length of the pipe is 0.85 m or 85 cm
Explanation:
Given the data in the question;
The successive harmonics are; 700 Hz , 900 Hz , and 1100 H
Now, for a closed pipe,
length of pipe (L) = λ/4
Harmonics; 1x, 3x, 5x, 7x, 9x, 11x
1100Hz - 900Hz = 200Hz
⇒ 2x = 200Hz
x = 100Hz ( fundamental frequency )
λ = V/f = 340 /100 = 3.4 m
Now
Length L = λ / 4
L = 3.4 / 4
L = 0.85 m or 85 cm
Therefore, the length of the pipe is 0.85 m or 85 cm
Answer:
chloroplasts
Explanation:
Most plant shoots exhibit positive phototropism, and rearrange their chloroplasts in the leaves to maximize photosynthetic energy and promote growth.