Answer:
3
Explanation:
it's too because on you measuring mass of something
U=0
<span>t=10 </span>
<span>a=9.8m/s/s </span>
<span>v is velocity (the tower must be very high to be able to fall for 10 seconds!!!) </span>
<span>you work out the result now</span>
Answer:
Explanation:
331 m/s / 2.5e4 cyc/s = 0.01324 m ≈ 1.3 cm
The work done by the applied force on the block against the frictional force is 15.75 J.
<h3>
Work done by the applied force</h3>
The work done by the applied force is calculated as follows;
W = Fd
F - Ff = ma
where;
- F is applied force
- Ff is frictional force
Fcos(37) - μmgsin(37) = ma
Fcos(37) - (0.3)(4)(9.8)sin(37) = 4(0.2)
0.799F - 7.077 = 0.8
F = 9.86 N
W = Fdcosθ
W = 9.86 x 2 x cos(37)
W = 15.75 J
Thus, the work done by the applied force on the block against the frictional force is 15.75 J.
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
The gravitational potential energy of the ball is 13.23 J.
Explanation:
Given;
mass of the ball, m = 0.5 kg
height of the shelf, h = 2.7 m
The gravitational potential energy is given by;
P.E = mgh
where;
m is mass of the ball
g is acceleration due to gravity = 9.8 m/s²
h is height of the ball
Substitute the givens and solve for gravitational potential energy;
PE = (0.5 x 9.8 x 2.7)
P.E = 13.23 J
Therefore, the gravitational potential energy of the ball is 13.23 J.