Whatever is inside of the ( ), simply plug that digit into the x-values for f(x)
So: f(x) = 7x - x^2, and f(7+h) - f(7)
= [7(7+h) - (7+h)^2] - [7(7) - (7)^2]
= [49+7h - 49+14h+h^2] - [49-49]
= 49-49 + 7h+14h + h^2 = h^2 + 21h =
h (h+21), h (h+21) = 0
h=0... But it stated h cannot = 0
So h+21 = 0, h = -21
Y=2(151)+3
y=302+3
y=305
So the 151st term is 305
No.it is false .if you multiply them together they equal something very different
The matrix represents the system:
-3x+5y=15
2x+3y=-10, which is choice c.
We can see it more clearly from the way we multiply matrices, as follows:
![\[ \left[ {\begin{array}{cc} -3 & 5 \\ \ 2 & 3 \\ \end{array} } \right] \] \cdot \[ \left[ {\begin{array}{c} x \\ y \\ \end{array} } \right] \]= \left[ {\begin{array}{c} -3\cdot x+5\cdot y \\ 2\cdot x+3\cdot y \\ \end{array} } \right] \]= \[ \left[ {\begin{array}{c} 15 \\ -10 \\ \end{array} } \right] \]](https://tex.z-dn.net/?f=%20%5C%5B%0A%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bcc%7D%0A%20%20%20-3%20%26%205%20%5C%5C%0A%20%20%20%20%5C%202%20%20%26%203%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%20%5Ccdot%20%20%5C%5B%0A%20%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%20%20%20x%20%5C%5C%0A%20%20%20%20y%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%3D%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%0A%20%20%20-3%5Ccdot%20x%2B5%5Ccdot%20y%20%5C%5C%0A%20%20%20%202%5Ccdot%20x%2B3%5Ccdot%20y%20%5C%5C%0A%20%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%0A%5C%5D%3D%20%5C%5B%20%5Cleft%5B%20%7B%5Cbegin%7Barray%7D%7Bc%7D%2015%20%5C%5C%20-10%20%5C%5C%20%5Cend%7Barray%7D%20%7D%20%5Cright%5D%20%5C%5D)
Answer: C
If th<span>e equation y=1/3x is the boundary line for the inequality y>1/3 x, then the solution set is illustrated by shading the area ABOVE the line y=(1/3)x.</span>