The formula for energy release per kilogram of fuel burned is energy release per kg=6.702*10-13. and 19. J 1 Mev = 1.602 X 10 T
Calculate the energy in joules per kilogram of reactants given MeV per reaction. Energy is the ability or capacity to perform tasks, such as the ability to move an item (of a certain mass) by exerting force. Energy can exist in many different forms, including electrical, mechanical, chemical, thermal, or nuclear, and it can change its form.
Think of a mole of plutonium-239 (molar mass: 239 grams) as a mole of "reactions."
Energy used in the US per person annually = 3-5 X 1011
Population (number of people) = 3.108The required mass of the fuel is 3.5x1011 x3-1x10 8x 10)/6.703 X1013 kg. the mass required: 1.62 x 1033 kg Mev in Joules 6 is equal to 101.60*I0-
19. J 1 Mev = 1.602 X 10 T, which translates to 1.602*1013/2.39x10-3 energy release per kilogram, or 6.702*10-13.
To learn more about Energy please visit -
brainly.com/question/27671072
#SPJ1
Answer:
19.48 m
Explanation:
Gravitational potential energy = mgh
Current weight = 539 N
Weight = mg = 539 N
Mass x Acceleration = 539 N
Mass x 9.81 = 539
Mass = 54.94 kg
Gravitational potential energy = mgh = 10500 J
54.94 x 9.81 x h = 10500
h = 19.48 m
Height of sitting = 19.48 m
Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is , where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and
If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation , the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.
Answer: A) Wavelength and frequency are inversely proportional.
Explanation:
From the wave equation;
Velocity= frequency × wavelength
If the above equation is rearranged making the frequency the subject of formula, it would give;
Frequency= velocity/ wavelength.
From the above equation we see that frequency is inversely proportional to the wavelength. This means that for every increase in wavelength there would be a decrease in frequency, and for every increase in frequency there is a reduction in wavelength.