1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
15

Please help!!!!!! this is due soon

Mathematics
1 answer:
inessss [21]3 years ago
6 0
The last one is correct because the line is not going up or down it’s every where so it’s the last one
You might be interested in
I give brainliest !
gladu [14]

Answer:

I can't be sure.

Step-by-step explanation:

I can't be sure if this image is to scale or not, there is no marker indicating the distance.

8 0
3 years ago
72A company bought 96 gallon jars of honey for a total of $3,072. They repackaged it into 8-ounce bottles. a. How many bottles c
Travka [436]
9 bottles will be filled to the top you’re welcome.
8 0
2 years ago
If
Fudgin [204]
Triangle DEF hope that helps
4 0
3 years ago
Solve these linear equations by Cramer's Rules Xj=det Bj / det A:
timurjin [86]

Answer:

(a)x_1=-2,x_2=1

(b)x_1=\frac{3}{4} ,x_2=-\frac{1}{2} ,x_3=\frac{1}{4}

Step-by-step explanation:

(a) For using Cramer's rule you need to find matrix A and the matrix B_j for each variable. The matrix A is formed with the coefficients of the variables in the system. The first step is to accommodate the equations, one under the other, to get A more easily.

2x_1+5x_2=1\\x_1+4x_2=2

\therefore A=\left[\begin{array}{cc}2&5\\1&4\end{array}\right]

To get B_1, replace in the matrix A the 1st column with the results of the equations:

B_1=\left[\begin{array}{cc}1&5\\2&4\end{array}\right]

To get B_2, replace in the matrix A the 2nd column with the results of the equations:

B_2=\left[\begin{array}{cc}2&1\\1&2\end{array}\right]

Apply the rule to solve x_1:

x_1=\frac{det\left(\begin{array}{cc}1&5\\2&4\end{array}\right)}{det\left(\begin{array}{cc}2&5\\1&4\end{array}\right)} =\frac{(1)(4)-(2)(5)}{(2)(4)-(1)(5)} =\frac{4-10}{8-5}=\frac{-6}{3}=-2\\x_1=-2

In the case of B2,  the determinant is going to be zero. Instead of using the rule, substitute the values ​​of the variable x_1 in one of the equations and solve for x_2:

2x_1+5x_2=1\\2(-2)+5x_2=1\\-4+5x_2=1\\5x_2=1+4\\ 5x_2=5\\x_2=1

(b) In this system, follow the same steps,ust remember B_3 is formed by replacing the 3rd column of A with the results of the equations:

2x_1+x_2 =1\\x_1+2x_2+x_3=0\\x_2+2x_3=0

\therefore A=\left[\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right]

B_1=\left[\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right]

B_2=\left[\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right]

B_3=\left[\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right]

x_1=\frac{det\left(\begin{array}{ccc}1&1&0\\0&2&1\\0&1&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{1(2)(2)+(0)(1)(0)+(0)(1)(1)-(1)(1)(1)-(0)(1)(2)-(0)(2)(0)}{(2)(2)(2)+(1)(1)(0)+(0)(1)(1)-(2)(1)(1)-(1)(1)(2)-(0)(2)(0)}\\ x_1=\frac{4+0+0-1-0-0}{8+0+0-2-2-0} =\frac{3}{4} \\x_1=\frac{3}{4}

x_2=\frac{det\left(\begin{array}{ccc}2&1&0\\1&0&1\\0&0&2\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)} =\frac{(2)(0)(2)+(1)(0)(0)+(0)(1)(1)-(2)(0)(1)-(1)(1)(2)-(0)(0)(0)}{4} \\x_2=\frac{0+0+0-0-2-0}{4}=\frac{-2}{4}=-\frac{1}{2}\\x_2=-\frac{1}{2}

x_3=\frac{det\left(\begin{array}{ccc}2&1&1\\1&2&0\\0&1&0\end{array}\right)}{det\left(\begin{array}{ccc}2&1&0\\1&2&1\\0&1&2\end{array}\right)}=\frac{(2)(2)(0)+(1)(1)(1)+(0)(1)(0)-(2)(1)(0)-(1)(1)(0)-(0)(2)(1)}{4} \\x_3=\frac{0+1+0-0-0-0}{4}=\frac{1}{4}\\x_3=\frac{1}{4}

6 0
3 years ago
Can someone please help???
klemol [59]

Answer:

2/3

Step-by-step explanation:

.that's the answer

4 0
3 years ago
Read 2 more answers
Other questions:
  • G Am<br> 22<br> 10<br> 122<br> 19<br> 3<br> 34<br> Function in standard form
    12·1 answer
  • How do you determine the common difference for an arithmetic sequence?
    6·1 answer
  • Please Help!!
    14·1 answer
  • Sarah's investment in jet blue stock grew 28% to $448 how much did she originally invest?
    7·1 answer
  • Subtracting 3xy^2 from 8xy^2 gives the same result as the expression as
    15·2 answers
  • Direct Variation: If y = 6, when x = -2, find y when x = 18.
    12·1 answer
  • Ik this is really easy but I'm so tired rn xD Please helppp
    13·1 answer
  • Suppose that a survey was taken and it showed that 18% of online shoppers in the United States would prefer to do business only
    10·2 answers
  • 20 POINTS !!!!!!!
    15·1 answer
  • Identify the domain of the function shown in the graph.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!