Answer:
A ability to decompose
B reactivity
Explanation:
Chemical properties are those properties that tell us about what a substance can do as regards to whether or not the substance reacts with other substances.
Examples are flammability, rusting of iron, precipitation, decomposition of water by an electric current.
The ability to decompose and reactivity are chemical properties of a substance.
- Physical properties tells us everything about what a substance is when no change is occurring to its constituents.
- Examples are state of matter, color, odor, taste, texture, hardness e.t.c
Ok thanks for the valuble info.
The atoms combine to form compounds to attain stability in nature. The combination of atoms takes place by sharing of electrons between the atoms or complete transfer of electrons from one atom to another. Generally, atoms combine to complete their octet, that is to possess eight electrons in their outer most shell (noble gas configurations) except hydrogen which can attain stability by two electrons in its outer most shell.
Since germanium has 4 electrons in its outer most shell so it needs 4 more electrons to complete its octet and attains the stability. Hydrogen has 1 electron in its outer most shell and it needs only 1 electron to attain stability so, each germanium will combine with 4 hydrogen atoms and thus forming
molecule which is stable in nature.
Hence,
is the formula of the hydride formed by germanium.
Answer
Calculating the mass number for an atom requires that we know the atomic number and the number of protons in the atom’s nucleus. The mass number then gives us the average weight of atoms of a given element. However, as long as the number of protons equals the number of neutrons, the values balance out and we always obtain a whole number for the mass number.
Explanation:
those 3
<h3>
Answer:</h3>

<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
- Analyzing Reactions RxN
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[RxN - Balanced] 2C + O₂ → 2CO₂
[Given] 0.25 moles O₂
[Solve] moles CO₂
<u>Step 2: Identify Conversions</u>
[RxN] 1 mol O₂ → 2 mol CO₂
<u>Step 3: Stoichiometry</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:
