When the Heat gain or lose = the mass * specific heat * ΔT
and when we have the mass of gold coin= 40 g
and the specific Heat of gold= 0.13 J/g°
and ΔT = (Tf- Ti) = 10°C - 50°C = -40 °C
so by substitution:
∴Heat H = 40 g * 0.13 J/g° * -40
= - 208 J
It becomes ionized and attains its stable electronic configuration.
Answer:
Answer is: mass of copper is 127 grams.
Balanced chemical reaction: Cu(s) + 2AgNO₃(aq) → Cu(NO₃)₂(aq) + 2Ag(s).
m(Ag) = 432 g.
n(Ag) = m(Ag) ÷ M(Ag).
n(Ag) = 432 g ÷ 108 g/mol.
n(Ag) = 4 mol.
From chemical reaction: n(Ag) : n(Cu) = 2 : 1.
n(Cu) = 4 mol ÷ 2 = 2 mol.
m(Cu) = n(Cu) · M(Cu).
m(Cu) = 2 mol · 63.5 g/mol.
m(Cu) = 127 g
Explanation:
The solute increased to the boiling point of the solvent. In shorter terms it's raising to the boiling point.