We solve this using special
relativity. Special relativity actually places the relativistic mass to be the
rest mass factored by a constant "gamma". The gamma is equal to 1/sqrt
(1 - (v/c)^2). <span>
We want a ratio of 3000000 to 1, or 3 million to 1.
</span>
<span>Therefore:
3E6 = 1/sqrt (1 - (v/c)^2)
1 - (v/c)^2 = (0.000000333)^2
0.99999999999999 = (v/c)^2
0.99999999999999 = v/c
<span>v= 99.999999999999% of the speed of light ~ speed of light
<span>v = 3 x 10^8 m/s</span></span></span>
When the resistance R is doubled, I = 1 A
One of the most fundamental and significant principles controlling electrical and electronic circuits is called Ohm's Law. For a linear device, it relates current, voltage, and resistance.
According to Ohm's Law, the current flowing through a circuit is inversely proportional to the resistance in the circuit and directly proportional to the applied potential difference.
Ohm's law can be written mathematically as follows:
V = IR
Where:
V = voltage expressed in Volts
I = current expressed in Amps
R = resistance expressed in Ohms
If any two quantities are known, the third can be computed by manipulating the formula.
I= V/R
R= V/I
To know more about Ohm's law refer:
brainly.com/question/796939
#SPJ4
Answer:
382.74 kJ.
Explanation:
The work that must be done to stop an 1100 kg car travelling at 59 km/h is - 382.74 kJ.
Answer:
-0.105 m/s
Explanation:
Given that
Mass of the astronaut, m(a) = 68.5 kg
Mass of the tool, m(t) = 2.25 kg
Speed of the tool after it is thrown, v(t) = 3.20 m/s
We know that momentum of a particle,
p = mv
See the attachment for calculations
Therefore, the speed is 0.105 m/s and it moves in the opposite direction.