Answer:
a) Osmolarity measures the moles of solute per liter of solution.
Explanation:
Osmolarity is defined as the number of moles of solute that contribute to the osmotic pressure, per liter of solution, of solution. That is, the measurement of the solute concentration. The prefix "osmo-" indicates the possible variation of the osmotic pressure in the cells, which will occur when the solution is introduced into the body.
What happens is the potential value of the conductor decreases due to the presence of second conductor
as the capacitance is given by C = q/v
the value of v deceases as v-v1
thus the new capacitance is = C' = q/v-v1 thus the lowering of v increases the capacitance
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.
Answer:
C
Explanation:
A magnetic field exerts its force beyond just direct touch.