Yes that is correct ma dude
![\begin{cases} 4x+3y=-8\\\\ -8x-6y=16 \end{cases}~\hspace{10em} \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%204x%2B3y%3D-8%5C%5C%5C%5C%20-8x-6y%3D16%20%5Cend%7Bcases%7D~%5Chspace%7B10em%7D%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20slope-intercept~form%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y%3D%5Cunderset%7By-intercept%7D%7B%5Cstackrel%7Bslope%5Cqquad%20%7D%7B%5Cstackrel%7B%5Cdownarrow%20%7D%7Bm%7Dx%2B%5Cunderset%7B%5Cuparrow%20%7D%7Bb%7D%7D%7D%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![4x+3y=-8\implies 3y=-4x-8\implies y=\cfrac{-4x-8}{3}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3} \\\\[-0.35em] ~\dotfill\\\\ -8x-6y=16\implies -6y=8x+16\implies y=\cfrac{8x+16}{-6} \\\\\\ y=\cfrac{8}{-6}x+\cfrac{16}{-6}\implies y=\stackrel{\stackrel{m}{\downarrow }}{-\cfrac{4}{3}} x-\cfrac{8}{3}](https://tex.z-dn.net/?f=4x%2B3y%3D-8%5Cimplies%203y%3D-4x-8%5Cimplies%20y%3D%5Ccfrac%7B-4x-8%7D%7B3%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-8x-6y%3D16%5Cimplies%20-6y%3D8x%2B16%5Cimplies%20y%3D%5Ccfrac%7B8x%2B16%7D%7B-6%7D%20%5C%5C%5C%5C%5C%5C%20y%3D%5Ccfrac%7B8%7D%7B-6%7Dx%2B%5Ccfrac%7B16%7D%7B-6%7D%5Cimplies%20y%3D%5Cstackrel%7B%5Cstackrel%7Bm%7D%7B%5Cdownarrow%20%7D%7D%7B-%5Ccfrac%7B4%7D%7B3%7D%7D%20x-%5Ccfrac%7B8%7D%7B3%7D)
one simple way to tell if both equations do ever meet or have a solution is by checking their slope, notice in this case the slopes are the same for both, meaning the lines are parallel lines, however, notice both equations are really the same, namely the 2nd equation is really the 1st one in disguise.
since both equations are equal, their graph will be of one line pancaked on top of the other, and the solutions is where they meet, hell, they meet everywhere since one is on top of the other, so infinitely many solutions.
Graph the inequalities given by the set of constraints. Find points where the boundary lines intersect to form a polygon. Substitute the coordinates of each point into the objective function and find the one that results in the largest value.
Answer: X = 10.20240940...
Step-by-step explanation:
x(2x + 9) = 2x^2 + 9x
2x^2 + 9x = 300
- 300 ON BOTH SIDES
2x^2 + 9x - 300 = 0
SOLVE USING THE QUADRATIC FORMULA
x = -b +/- all root (b)^2 - 4(a)(c) All over 2(a)
When all the values are plugged in:
When using "+" in the equation you should get:
x = 10.20240940…
When using "-" in the equation you should get:
x = −14.70240940…
Now.. you CANNOT have a negative length, so you cross of the negative value leaving you one value for x which is 10.20240940...
YOUR ANSWER IS: x = 10.20240940...