So I’m not 100% sure what you’re asking but I’m going to give it a go. The elimination reaction is a term used in organic chemistry that describes a type of reactions. The name kinda tells you what’s going to happen. Something is going to be removed/eliminated from initial reactant/substrate and as a result, an alkene (double bond containing compound) will form.
In elimination reactions a hydrogen atom is first removed (as a H+) from the beta carbon. As a result, the left behind electrons create a pi bond between the beta carbon and the neighboring alpha carbon. This promotes the electronegative atom, on the alpha carbon, to leaves the substrate taking both electrons from the shared sigma bond with the alpha carbon.
Evaporation!
-Melting is a solid to a liquid
-sublimation is directly from a solid to a gas
-condensation gas to liquid
For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37
Answer:
The weigth of a 90kg man standing on the moon is <u><em>147.6 N (option C)</em></u>
Explanation:
Weight is called the action exerted by the force of gravity on the body.
The mass (amount of matter that a body contains) of an object will always be the same, regardless of where it is located. Instead, the weight of the object will vary according to the force of gravity acting on it.
The formula that allows you to calculate the weight of any body is:
W = m*g
where:
- W = weight measured in N.
- m = mass measured in kg.
- g = acceleration of gravity measured in m/s². The acceleration of gravity g is the same for all objects that fall due to gravitational attraction, whatever their size or composition. For example, as an approximate value on Earth, g = 9.8 m/s².
In this case, the mass m has a value of 90 kg and the gravity g has a value of 1.64 m/s², which is the value of the acceleration of gravity of the moon. Then:
W=90 kg* 1.64 m/s²
<u><em>W= 147.6 N</em></u>
Finally, <u><em>the weigth of a 90kg man standing on the moon is 147.6 N (option C)</em></u>