As we know,
Density of Benzene = 876 Kg/m³
And,
Density of Water = 997 Kg/m³
So,
Specific Gravity is calculated as,
Specific Gravity = Density of Benzene / Density of Water
Specific Gravity = 876 Kg/m³ / 997 Kg/m³
Specific Gravity = 0.878
Every object having specific gravity less than 1 will float on water and if value is greater than 1 then it will sink.
Benzene being non-polar in nature does not mix with water and due to less density it will float on the surface of water.
Activation energy is defined as the least amount of energy that is needed to be available in a chemical system with potential reactants in order to result a chemical reaction. Therefore, the correct answer would be the first option: the heat released in a reaction.
We are provided with the amount of energy released when one mole of carbon reacts. We mus first convert the given mass of carbon to moles and then compute the energy released for the given amount.
Moles = mass / atomic mass
Moles = 23.5 / 12
Moles = 1.96 moles
One mole releases 394 kJ/mol
1.96 moles will release:
394*1.96
= 772.24
The enthalpy change of the reaction will be -772.24 kJ
the law that the product of the pressure and the volume of one gram molecule of an ideal gas is equal to the product of the absolute temperature of the gas and the universal gas constant.
The reaction is a hydrogenation reaction of an alkene, and its equation is:
C₂H₄(g) + H₂(g) → C₂H₆(g)
Therefore, this reaction can be sped up just as any other irreversible reaction may have its rate increased, by increasing temperature and pressure to increase the effective collisions of molecules.