The correct answer is Gems are rare
Ok the answers to the hole .doc is
1. Neutrons, Protons, and Electrons
2. N<span>ucleus
3. N</span>eutrons and Protons
4. Electrons
5. Because they represent different things (I would put this in your own words)
Answer:
The correct answer to the question is Option E (Strongly retained analytes will give broad peaks).
Explanation:
The other options are true because:
A. Initial temp = 50 °C
Final temp = 270 °C
Differences in temp = 270 - 50 = 220°C
Rate = 10 °C/minute.
So, at 10 °C/minute,
total of 220°C /10 °C = number of minutes required to reach the final temp.
220/10 = 22 minutes
B. A column has a minimum and maximum use temperature. Solutes that are already retained would remain stationary while temperatures are low. This would only change if there is an increase in temperature. Heat transfers more energy to the liquid which would make the solute interact with the column phase.
C. Weakly retained solutes may contain larger molecules, will separate by absorbing into the solvent early in separation making the mobile phase separates out into its components on the stationary phase.
D. Retained solute's vapor pressure is higher at higher temperatures making it possible for particle to escape more from the solute when the temperature is high than when it is low.
Answer:
The oxidizing agent is the MnO₄⁻
Explanation:
This is the redox reaction:
10 I⁻ (aq) + 2 MnO₄⁻ (aq) + 16 H⁺ (aq) → 5 I₂ (s) + 2 Mn²⁺ (aq) + 8 H2O (l)
Let's determine the oxidation and the reduction.
I⁻ acts with -1 in oxidation state and changes to 0, at I₂.
All elements in ground state has 0 as oxidation state.
As the oxidation state has increased, this is the oxidation, so the iodide is the reducing agent.
In the permanganate (MnO₄⁻), Mn acts with +7 in oxidation state and decreased to Mn²⁺. As the oxidation state is lower, we talk about the reduction. Therefore, the permanganate is the oxidizing agent because it oxidizes iodide to iodine