The nucleus while large has a small ratio of mass when dealing with atoms, they are very spread out and are mostly solid with a blocky shape.
Explanation:
(1)
True
The winds are significant in the distribution of heat across the globe. There are global air circulations around the world such as the Hadley and polar cells that take heat from the hotter regions to the cooler regions. This is driven by high and low-pressure systems on earth that are influenced by the sun. Cooler air masses move from the high-pressure system and displace the warm winds in the low-pressure systems. This helps in maintaining a heat balance on earth.
(2)
False
The geosphere not only includes all the rocks on the surface of the earth but also the whole of the lithosphere ( or crust), which also includes all the landforms on earth. All the rocks and minerals in the interior of the earth are also part of the geosphere, including the process – such as the convection currents of the mantle- that helps in the shaping of the earth's surface.
(3)
A.
In a storm, the heat from the hydrosphere which is transferred to the atmosphere via the heat of evaporation is what feeds the storm. Therefore these two spheres not only share distribution of heat energy but also water. When the storms dissipate the heat and its water from the clouds, the water flows back to the hydrosphere and the cycle continues.
(4)
True
The biosphere includes all the living and biotic components on earth. Therefore even the marine animals in the oceans are part of the biosphere. They are one aspect that signifies the interaction betwene the hydrosphere and the biosphere. These organisms draw oxygen, water and minerals from the hydrosphere which is important or life.
(5)
True
However, the atmosphere is not the only sphere that distributes heat across the globe. So does the hydrosphere. The ocean's currents are very significant with this regard just as are air currents, The warm surface currents from the equator distribute heat towards the poles while cooler deeper currents flow towards the equator from the poles – maintaining a heat balance on earth.
(6)
D.
When a volcano erupts, gases -like sulfur dioxide and carbon dioxide- and pyroclasts from deep in the earth rocks (geosphere) are spewed into the atmosphere. This is an example of how these two spheres of the earth interact.
Learn More:
For more on spheres of the earth check out;
brainly.com/question/10893114
brainly.com/question/825370
brainly.com/question/10893109
#LearnWithBrainly
Answer:
When there is less carbon (in the form of carbon dioxide) in abiotic matter, less carbon is available for producers making energy storage molecules. When there is more sunlight, producers can make more energy storage molecules from the carbon in carbon dioxide.
Hope this helps.
Answer: The correct answer will be 5 moles, because according to the stoichiometric ratio, 5 moles of oxygen produce 6 moles of water.
Explanation:
The balanced equation is:
⇒ 
As you can see in the balanced reaction, it is necessary 5 moles of oxygen for obtain 6 moles of water. This stoichiometric ratio can be used for calculate any amount of produced water, once you have a specific amount of oxygen.
Answer:
2. (C) K⁺; 3. (E) Hg⁺; 4. Hg⁺
Explanation:
We must first write the electron configurations of the different species.
(A) Fe²⁺
Fe: [Ar]4s²3d⁶
Fe²⁺: [Ar]3d⁶
When removing electrons from a transition metal ion, you remove the s electrons first.
(B) Cl
Cl: [Ne]3s²3p⁵
(C) K⁺
K: [Ar]4s
K⁺: [Ar]
(D) Cs
Cs: [Xe]6s
(E) Hg⁺
Hg: [Xe]6s²4f¹⁴5d¹⁰
Hg⁺: [Xe]6s4f¹⁴5d¹⁰
2. K⁺ has a noble gas configuration
3. Hg⁺ has electrons in f orbitals.
4. The electron configuration of Au is [Xe]6s4f¹⁴5d¹⁰, not [Xe]6s²4f¹⁴5d⁹, because a filled d subshell is more stable than a filled s subshell.
Thus, Hg⁺ is isoelectronic with Au.