Answer:
<em>1</em><em>. </em><em>A body is said to be at rest if its position does not change with respect to its surroundings.</em>
The earth obviously because it is on Earth like we are and it has the same gravital properties. It falls when you drop it and rises when you pick it up
Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
a) 0.94 m
The work done by the snow to decelerate the paratrooper is equal to the change in kinetic energy of the man:

where:
is the force applied by the snow
d is the displacement of the man in the snow, so it is the depth of the snow that stopped him
m = 68 kg is the man's mass
v = 0 is the final speed of the man
u = 55 m/s is the initial speed of the man (when it touches the ground)
and where the negative sign in the work is due to the fact that the force exerted by the snow on the man (upward) is opposite to the displacement of the man (downward)
Solving the equation for d, we find:

b) -3740 kg m/s
The magnitude of the impulse exerted by the snow on the man is equal to the variation of momentum of the man:

where
m = 68 kg is the mass of the man
is the change in velocity of the man
Substituting,

Explanation:
There's a massive amount, just think of anything everyday. Like a table on the floor, or when your walking around and putting pressure on the floor. When you squeeze something which is solid. Anything like that will do.