Complete Question
A parallel plate capacitor creates a uniform electric field of 5 x 10^4 N/C and its plates are separated by 2 x 10^{-3}'m. A proton is placed at rest next to the positive plate and then released and moves toward the negative plate. When the proton arrives at the negative plate, what is its speed?
Answer:

Explanation:
From the question we are told that:
Electric field 
Distance 
At negative plate
Generally the equation for Velocity is mathematically given by

Therefore




Answer:
299,792,458 m/s = speed of light
Explanation:
A) f = 1.8 rev/s = 2 Hz
<span>T = 1 / f = 0.55s
B) not really sure..srry
C) </span><span>T = 2 pi √ ( L / g ) </span>
<span>0.57 = 2 x 3.14 x √ ( 0.2 / g )
</span><span>
g = 25.5 m/s²
</span>
Hope this helps a little at least.. :)
Explanation:
- In chemical reactions, chemical changes occur.
- Atoms are simply rearranged and new bonds are formed.
- Chemical reactions are driven by a need for atoms to attain stability in their structure.
- In all chemical reactions, a reactant or reactants gives new product i.e new substances are formed.
- Most these reactions are not easily reversible.
- They are usually accompanied by the release of energy.
Learn more:
Chemical change brainly.com/question/9388643
#learnwithBrainly
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:

