Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
You can calculate potential energy by:
U = m.g.h
Where, U = potential energy
m = mass
g = acceleration due to gravity
h = height
Hope this helps!
Weight will remain the same for two identical books, one lying flat and the other standing on an end.
The strain at a factor internal a liquid is at once proportional to the intensity of the factor. When an item is submerged in a liquid, the intensity of its backside from the floor of the liquid is extra than that of some other a part of the item.
Archimedes' precept is the declaration that the buoyant pressure on an item is identical to the load of the fluid displaced with the aid of using the item.
Ensure your scale is on a flat, strong and stage floor. Do now no longer use your scale on carpet. When taking measurements, stand nevertheless withinside the middle of the platform till all measurements are displayed, and if feasible do now no longer circulate your scale in-among measurements.
Learn more about weight here brainly.com/question/229459
#SPJ4
It is know as smoke because if you cook food smoke will go up in the air and that makes vapor and also water from the ground it suck up
Answer:
<em> The elastic potential energy stored in the bungee cord = 20 J</em>
Explanation:
potential energy: This is the energy possessed by a body due to its position. The S.I unit of energy is Joules. The mathematical expression for elastic potential energy is given below
E = 1/2ke²................ Equation 1
Where E = elastic potential energy of the spring, k = force constant of the spring, e = extension
<em>Given: K = 10 N/m, e = 2.00 m</em>
<em>Substituting these values into Equation 1</em>
<em>E = 1/2(10)(2)²</em>
<em>E = 5×4</em>
<em>E = 20 Joules.</em>
<em>Therefore the elastic potential energy stored in the bungee cord = 20 J</em>
<em></em>