if i am changing velocity, i must also have <u>acceleration</u> and a net <u>force</u>
<h2>
<u>Newton's</u><u> </u><u>first</u><u> </u><u>law</u><u> </u><u>of</u><u> </u><u>motio</u><u>n</u></h2>
- Newton's first law of motion states that if a body is at rest or moving at a constant speed in a straight line, it will remain at rest or keep moving in a straight line at constant speed unless it is acted upon by a force.
According to Newton's first law of motion, without a force acting on an object, its velocity does not change. The net force acts on an object to change its velocity and cause acceleration.
Read more about velocity:
brainly.com/question/4931057
Planet A is heavier than Planet B
Because Planet A is heavier than Planet B, Planet B will be easier to be moved by gravity causing it to move faster than Planet A.
Hope This Helped : )
As we know that KE and PE is same at a given position
so we will have as a function of position given as

also the PE is given as function of position as

now it is given that
KE = PE
now we will have




so the position is 0.707 times of amplitude when KE and PE will be same
Part b)
KE of SHO at x = A/3
we can use the formula

now to find the fraction of kinetic energy



now since total energy is sum of KE and PE
so fraction of PE at the same position will be


Answer:
option C
Explanation:
given,
Force by the engine on plane in West direction = 350 N
Frictional force on the runway = 100 N in east
force exerted by the wind = 100 N in east
net force and direction = ?
consider west to be positive and east be negative.
when airplane will be moving there will be frictional as well as wind resistance will be acting in opposite direction of airplane
Net force = 350 N - 100 N - 100 N
= 150 N
as our answer comes out to be positive so the airplane will be moving in West
hence, the correct answer is option C
Answer:
The tube should be held vertically and perpendicular to the ground.
Explanation:
Answer: The tube should be held vertically and perpendicular to the ground. The reason is as follows:
Reasoning:
The power lines are parallel to the ground hence, their electric field will be perpendicular to the ground and equipotential surface will be cylindrical.
Hence, if you will put fluorescent tube parallel to the ground then both the ends of the tube will lie on the same equipotential surface and the potential difference will be zero.
So, to maximize the potential the ends of the tube must be on different equipotential surfaces. The surface which is near to the power line has high potential value and the surface which is farther from the line has lower potential value.
hence, to maximize the potential difference, the tube must be placed perpendicular to the ground.