This is your perfect answer
The base unit for time is the second (the other SI units are: metre for length, kilogram for mass, ampere for electric current, kelvin for temperature, candela for luminous intensity, and mole for the amount of substance). The second can be abbreviated as s or sec.
Answer:
<h2>
206.67N</h2>
Explanation:
The sum of force along both components x and y is expressed as;

The magnitude of the net force which is also known as the resultant will be expressed as 
To get the resultant, we need to get the sum of the forces along each components. But first lets get the acceleration along the components first.
Given the position of the object along the x-component to be x = 6t² − 4;


Similarly,



Hence, the magnitude of the net force acting on this object at t = 2.15 s is approximately 206.67N
Answer:
2.11 seconds
Explanation:
We use the kinematic equation for the velocity in a constantly accelerated motion under the acceleration of gravity (g):

Answer:
Explanation:
Initially no of atoms of A = N₀(A)
Initially no of atoms of B = N₀(B)
5 X N₀(A) = N₀(B)
N = N₀ 
N is no of atoms after time t , λ is decay constant and t is time .
For A
N(A) = N(A)₀ 
For B
N(B) = N(B)₀ 
N(A) = N(B) , for t = 2 h
N(A)₀
= N(B)₀ 
N(A)₀
= 5 x N₀(A) 
= 5 
= 5 
half life = .693 / λ
For A
.77 = .693 / λ₁
λ₁ = .9 h⁻¹
= 5 
Putting t = 2 h , λ₁ = .9 h⁻¹
= 5 
= 30.25
2 x λ₂ = 3.41
λ₂ = 1.7047
Half life of B = .693 / 1.7047
= .4065 hours .
= .41 hours .