Answer:
Their experimental design lacks control group
Explanation:
Based on what I read, the scientists don't have a control group as one of the main groups thus they cannot, in scientific sense, say that the medicine is better or worse. You always need a control group receiving no intervention because then we can compare groups and assess the effectiveness of that intervention (in our case if we had control group vs people who received the medicine, we could see if the people who received the medicine had improved condition etc when compared to participants who did not receive anything)
Answer:

Explanation:
From the question we are told that:
Frictional force 
Coefficient of kinetic friction 
Generally the equation for Normal for is mathematically given by

Therefore


For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
Answer:
Explanation:
The charges will repel each other and go away with increasing velocity , their kinetic energy coming from their potential energy .
Their potential energy at distance d
= kq₁q₂ / d
= 9 x 10⁹ x 36 x 10⁻¹² / 2 x 10⁻² J
= 16.2 J
Their total kinetic energy will be equal to this potential energy.
2 x 1/2 x mv² = 16.2
= 3 x 10⁻⁶ v² = 16.2
v = 5.4 x 10⁶
v = 2.32 x 10³ m/s
When masses are different , total P.E, will be divided between them as follows
K E of 3 μ = (16.2 / 30+3) x 30
= 14.73 J
1/2 X 3 X 10⁻⁶ v₁² = 14.73
v₁ = 3.13 x 10³
K E of 30 μ = (16.2 / 30+3) x 3
= 1.47 J
1/2 x 30 x 10⁻⁶ x v₂² = 1.47
v₂ = .313 x 10³ m/s