1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
4 years ago
7

Can anyone help me with these three questions

Mathematics
1 answer:
iren2701 [21]4 years ago
5 0
Sure, what are the questions?
You might be interested in
Four less than half of a number is 17. find the number
Keith_Richards [23]
The answer is 42. Because 17+4=21 and 21 times 2= 42
3 0
3 years ago
Peter will travel 1,342 kilometers from Paris to Rome. Peter will start his journey at 5:00 A.M. Monday morning and arrive in Ro
Hunter-Best [27]

Answer:

61 km/s

Step-by-step explanation:

First, you count the number of hours he travelled: 22

Next, divide the distance he travelled, 1342, by the time he travelled, 22, \frac{1342}{22} = 61

7 0
3 years ago
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
How much more will $28,000 earn in interest than $16,000 if both are
WINSTONCH [101]

Answer:

Final answer is $12696.

Step-by-step explanation:

Given that initial amount P = $28000

Interest rate r = 5.8% = 0.058

Time = 1 year

Then future value is given by :

A=P\left(1+r\right)^t

A=28000\left(1+0.058\right)^1=29624

Similarly calculate future value for 2nd case:

Given that initial amount P = $16000

Interest rate r = 5.8% = 0.058

Time = 1 year

Then future value is given by :

A=P\left(1+\frac{r}{n}\right)^{n\left(t\right)}

A=16000\left(1+0.058\right)^1=16928

then difference = 29624 - 16928 = 12696

Hence final answer is $12696.

8 0
3 years ago
Read 2 more answers
Write an equation of the line that passes through (2,-5) and is parallel to the line 2y=3x+10 .
abruzzese [7]

Answer:

2y = 3x + 10 --> almost there already, just divide everything by 2 to get y by itself. y = 3/2x + 5 --> now you have it in the y=mx + b form, so your slope is 3/2 They asked for the parallel line, remember parallel lines have the same slope, therefore you use the same slope.

6 0
2 years ago
Read 2 more answers
Other questions:
  • Michelle paid $72 on a $600 loan for 2.5 years. What was the interest rate?
    10·1 answer
  • What is an equation in point-slope form for the line that passes through the points (−3,5) and (2,−3) ? y−3=−58(x+5) y−3=−85(x+5
    9·2 answers
  • Figure ABCD is a parallelogram. What is the value of n?<br> 3<br> 5 <br>17 <br>25
    15·2 answers
  • What is 3 / 2/3 * 12
    8·1 answer
  • Ricardo is building a rectangular wooden box to ship a large item in. He needs the length of the box to be 30 inches longer than
    6·2 answers
  • Which is a correct classification for the triangle?
    9·1 answer
  • PLEASE HELP I HAVE 10 MINUTES ILL MARK YOU BRAINLIEST
    14·1 answer
  • Melissa has 50 pages in her postcard collection book. Each postcard takes up 1/3 of a page. Melissa has filled up 17 pages with
    13·1 answer
  • Ash recycles 7 plastic bottles every week. Which expression shows the total number of plastic bottles he recycles in w weeks?
    7·1 answer
  • Sophie uses 18 beads to make a neckalace , 3/6 of the beads are purple
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!