The two cars illuminated by sodium lamps appear black because the red and black colours are absorbed and no colour is reflected.
<h3>What is reflection of light?</h3>
Reflection of light is the ability of light rays to bounce back off a surface when they are incident on that surface
The ability of light to be reflected gives rise to changes in the colour of objects
When light is incident on a surface, the colour that is reflected gives the colour of that object.
Therefore, when two cars of red and black colur are illuminated by sodium lamps, they appear black because the red and black colours are absorbed and no colour is reflected.
Learn more about reflection of light at: brainly.com/question/1191238
Answer:
The longest wavelength of radiation that passesses the necessary energy for breaking the Cl- Cl bond (in Cl2) is approximately 494.2 nm, which corresponds to the visible spectrum.
Explanation:
In order to answer this question we need to recall that the energy of a photon is given by:
E = hc/lambda, where
E = energy
h = Planck's constant
c = speed of light in vacuum
lambda = associated photon wavelength
In order to perform the calculations, first we need to change the units of 242kJ/mol to J. For doing this, we to divide by Avogadro's number and multiply by a 1000:
242kJ/mol = (242kJ/mol)*(1mol/6.022x10^23 particles)*(1000J/1kJ)= 4.0186x10^-19 J
Now, we simply solve for lambda and substitute the appropriate values in the energy equation:
lambda = hc/E = (6.626x10^-34 J s)*(3x10^8 m/s)/(4.0186x10^-19 J) = (1.986x10^-25 J m)/(4.0186x10^-19 J) = 4.942x10^-7 m = 494.2x10^-9 m = 494.2 nm
Therefore, the wavelength for a photon to break the Cl-Cl bond in a Cl2 molecule should be 494.2 nm at most, which corresponds to the visible spectrum (The visible spectrum includes wavelengths between 400 nm and 750 nm).
Answer:
(a). The change in the average kinetic energy per atom is
.
(b). The change in vertical position is 2413 m.
Explanation:
Given that,
Mass = 40.0 u
The increased temperature from 286 K to 362 K.
(a). We need to calculate the change in the average kinetic energy per atom
Using formula of kinetic energy

Put the value into the formula


(b). The change in potential energy of the container due to change in the vertical position
We need to calculate the change in vertical position
Using formula of potential energy




Hence, (a). The change in the average kinetic energy per atom is
.
(b). The change in vertical position is 2413 m.
<span>The
heavier the body is, the stronger its gravitational pull. Example, the Milky Way
Galaxy has a gravitational pull because of the heavenly bodies such as stars and planets are surrounding it. A strong force is exerted if the mass of another body is bigger than the other body.</span>