Answer:
Frequency
Explanation:
Photons are the packet of energy. They are massless and chargeless particles. They travel in the vacuum with the speed of light. The energy of photon is given by :

Where
h = Planck's constant
= frequency of photon
Or 
c = speed of light
= wavelength of photon
From the above equation, it is clear that the energy of photon is directly proportional to its frequency.
Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
From the question,
We are to calculate the power each student would have to climb the flight of stairs.
Power can be calculated using the formula

Where
P is Power
F is the force
d is the distance
and t is the time
NOTE: The weight of the students represent the force
F = 700 N
d = 4 m
t = 6 s
∴ 
P = 467 W
F = 650 N
d = 4 m
t = 6 s
∴ 
P = 433 W
Hence, Student 1 would have a power 467 W and student 2 would have a power of 433 W. The correct option is the fourth option - Student 1 would have 467 W, and Student 2 would have 433 W of power.
Learn more here: brainly.com/question/18801566
Answer:
» e. Electrons and protons
Explaination :
Electrons are negatively charged and protons are positively charged.
- The neutrons do not have a charge.
Oooooo there's a spongy bone? that's cool! Lol okay okay, I will research it and help you out.
Here's what I found:
Cancellous bone<span>, also known as </span>spongy<span> or </span>trabecular bone<span>, is one of the </span>two<span> types of </span>bone<span> tissue found in the human body. ... It is very porous and contains red </span>bone<span>marrow, where blood cells are made.</span>
In a free body diagram for an object projected upwards;
- the acceleration due to gravity on the object is always directed downwards.
- the velocity of the object is always in the direction of the object's motion.
An object projected upwards is subjected to influence of acceleration due to gravity.
As the object accelerates upwards, its velocity decreases until the object reaches maximum height where its velocity becomes zero and as the object descends its velocity increases, which eventually becomes maximum before the object hits the ground.
To construct a free body diagram for this motion, we consider the following;
- the acceleration due to gravity on the object is always directed downwards
- the velocity of the object is always in the direction of the object's motion.
<u>For instance:</u>
upward motion for velocity ↑ downward motion for velocity ↓
↑ ↓
↑ ↓
acceleration due to gravity ↓
↓
↓
Learn more here: brainly.com/question/13235430