1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara31 [8.8K]
3 years ago
5

Why does the dehydration of an alcohol more often use concentrated sulfuric acid, H 2 S O 4 HX2SOX4, as the acid catalyst rather

than dilute hydrochloric acid, H C l HCl
Chemistry
1 answer:
Dimas [21]3 years ago
4 0

KAnswer:

See explanation

Explanation:

It is more common to use H2SO4 for dehydration reaction rather than HCl because HCl contains a good nucleophile,the chloride ion.

Owing to the presence of the chloride ion, a substitution reaction involving the chloride ion may also proceed also thereby affecting the elimination reaction.

Also, concentrated H2SO4 is a very good drying agent thus, as long as it is used, the alcohol substrate is completely dehydrated to yield the alkene.

Note that HCl is not a dehydrating agent.

You might be interested in
Determine the enthalpy for the reaction A+B --> C If we know the following:
PolarNik [594]

Explanation:

here is the answer to the question

7 0
3 years ago
How many years have the earth
Ivenika [448]
We need more information to answer this.
6 0
3 years ago
Read 2 more answers
What is true of a covalent bond? (03.03)
garri49 [273]

Answer:

I think B..

Explanation:

It is the sharing of electrons from one atom to another .

6 0
3 years ago
Read 2 more answers
Question 1(Multiple Choice Worth 4 points)
zubka84 [21]

<u>Answer </u>

Answer 1 : 28.9 g of CO is needed.

Answer 2 : Six moles of H_{2}O over Nine moles of O_{2}

Answer 3 : Four over two fraction can be used for the mole ratio to determine the mass of Fe from a known mass of Fe_{2}O_{3}.

Answer 4 : Mass of O_{2} = (150 × 3 × 31.998) ÷ (232.29 × 1) grams

Answer 5 : 8.4 moles of sodium cyanide (NaCN) would be needed.

<u>Solution </u>

Solution 1 : Given,

Given mass of Fe_{2}O_{3} = 55 g

Molar mass of Fe_{2}O_{3} = 159.69 g/mole

Molar mass of CO = 28.01 g/mole

Moles of Fe_{2}O_{3} = \frac{\text{ Given mass of } Fe_{2}O_{3}}{\text{ Molar mass of } Fe_{2}O_{3}} = \frac{55 g}{159.69 g/mole} = 0.344 moles

Balanced chemical reaction is,

Fe_{2}O_{3}(s)+3CO(g)\rightarrow 2Fe(s)+3CO_{2}(g)

From the given reaction, we conclude that

1 mole of Fe_{2}O_{3} gives              →         3 moles of CO

0.344 moles of Fe_{2}O_{3} gives    →         3 × 0.344 moles of CO

                                                     =         1.032 moles

Mass of CO = Number of moles of CO × Molar mass of CO

                    = 1.032 × 28.01

                    = 28.90 g

Solution 2 : The balanced chemical reaction is,

2C_{3}H_{6}+9O_{2}\rightarrow 6CO_{2}+6H_{2}O

From the given reaction, we conclude that the Six moles of H_{2}O over Nine moles of O_{2} is the correct option.

Solution 3 : The balanced chemical reaction is,

4Fe+3O_{2}\rightarrow 2Fe_{2}O_{3}

From the given balanced reaction, we conclude that Four over two fraction can be used for the mole ratio to determine the mass of Fe from a known mass of Fe_{2}O_{3}.

Solution 4 : Given,

Given mass of Zn(ClO_{3})_{2} = 150 g

Molar mass of Zn(ClO_{3})_{2} = 232.29 g/mole

Molar mass of O_{2} = 31.998 g/mole

Moles of Zn(ClO_{3})_{2} = \frac{\text{ Given mass of }Zn(ClO_{3})_{2} }{\text{ Molar mass of } Zn(ClO_{3})_{2}} = (\frac{150\times 1}{232.29})moles

The balanced chemical equation is,

Zn(ClO_{3})_{2}}\rightarrow ZnCl_{2}+3O_{2}

From the given balanced equation, we conclude that

1 mole of Zn(ClO_{3})_{2} gives          →       3 moles of O_{2}

(\frac{150\times 1}{232.29})moles of Zn(ClO_{3})_{2} gives  →  [(\frac{150\times 1}{232.29})\times 3] moles of O_{2}

Mass of O_{2} = Number of moles of O_{2} × Molar mass of  O_{2} = [(\frac{150\times 1}{232.29})\times 3] \times 31.998 grams

Therefore, the mass of O_{2} = (150 × 3 × 31.998) ÷ (232.29 × 1) grams

Solution 5 : Given,

Number of moles of Na_{2}SO_{4} = 4.2 moles

Balanced chemical equation is,

H_{2}SO_{4}+2NaCN\rightarrow 2HCN+Na_{2}SO_{4}

From the given chemical reaction, we conclude that

1 mole of Na_{2}SO_{4} obtained from 2 moles of NaCN

4.2 moles of Na_{2}SO_{4} obtained   →   2 × 4.2 moles of NaCN

Therefore,

The moles of NaCN needed = 2 × 4.2 = 8.4 moles


3 0
3 years ago
Read 2 more answers
Where does cellular respiration occur?
lukranit [14]
The answer to the question is c! If u need me to explain I will in the comments but I hope this helped ;)
4 0
3 years ago
Other questions:
  • Forming ionic bonds 1. a chemical bond that forms when electrons are transferred from one atom to another is a(n) 2. charged par
    9·1 answer
  • By changing the number of _______ you get the same element that has a different atomic mass. An example of this would be carbon-
    7·1 answer
  • Sound travels most quickly through solids because _____. solids have greater frequencies the molecules in solids are very close
    12·2 answers
  • Solutions of hydrogen in palladium may be formed by exposing Pd metal to H gas. The concentration of hydrogen in the palladium d
    5·1 answer
  • ILL GIVE BRAINLISTS!!!!!!
    8·2 answers
  • Please match the example with the classification of matter in which it belongs. Column A 1. soil: soil 2. chocolate milk: chocol
    12·1 answer
  • 4. What is the percent yield of a reaction that produces 12.5 g CF2Cl2 from 32.9 g of CCl4 and excess HF
    13·1 answer
  • How many grams of oxygen, O 2 , is consumed when 41.9 g of propane, C 3 H 8 , burns?
    8·1 answer
  • Please answer quickly ​
    14·1 answer
  • Based on the law of conservation of matter, describe the relationship between the mass of the recants, and the mass of the produ
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!