Answer:
The correct answer is: pH= 4.70
Explanation:
We use the <em>Henderson-Hasselbach equation</em> in order to calculate the pH of a buffer solution:
![pH= pKa + log \frac{ [conjugate base]}{[acid]}](https://tex.z-dn.net/?f=pH%3D%20pKa%20%2B%20log%20%20%20%5Cfrac%7B%20%5Bconjugate%20base%5D%7D%7B%5Bacid%5D%7D)
Given:
pKa= 4.90
[conjugate base]= 4.75 mol
[acid]= 7.50 mol
We calculate pH as follows:
pH = 4.90 + log (4.75 mol/7.50 mol) = 4.90 + (-0.20) = 4.70
It is stored in the bonds between atoms.
Answer;
=259 ml
Explanation;
-According to Gay Lussac's Law of Combining Volumes when gases react, they do so in volumes which have a simple ratio to one another, and to the volume of the product formed if gaseous, provided the temperature and pressure remain constant.
-Thus; from the volume of nitrogen and oxygen gases; we have; 316 / 178 = 1.775 moles of nitrogen gas per mole of oxygen gas.
-Therefore, nitrogen gas is the limiting reactant, and for each mole of nitrogen gas used, we will get 1 mole of N2O. This means the resulting volume of N2O with 100% yield will be the same as the volume of nitrogen gas used, thus, 100% yield will produce 316 mL.
However, with 82% yield the volume would be; 316 × 82/100 =259 ml
Therefore; the volume of N2O at 82% yield will be 259 ml
Relatively few hydrogen atoms