Answer:
The molecule has two chiral carbons
Explanation:
i hope its the right answer
Answer:
The final temperature of the mixture is 22.3°C
Explanation:
Assuming that the 120 g substance at 80°C is water, final temperature of the mixture can be determined using the formula:
Heat lost = Heat gained
Heat = mc∆T where m is mass, c is specific heat capacity of water, and ∆T is the temperature change =<em> Tfinal - Tinitial</em>.
Let the final temperature be T
Heat lost = 120 × c × (T - 80)
Heat gained = 3000 × c × ( T - 20)
Equating the heat lost and heat gained
120 × c × -(T - 80) = 3000 × c × (T - 20)
9600 - 120T = 3000T - 60000
60000 + 9600 = 3000T + 120T
69600 = 3120T
T = 69600/3120
T = 22.3°C
Therefore, the final temperature of the mixture is 22.3°C
Answer:
10.1g of H₂ are produced
Explanation:
To solve this question we need, first, to convert the mass of each reactant to moles and, using the chemical reaction, find limiting reactant. With limiting reactant we can find the moles of H2 and its mass:
<em>Moles Zn -Molar mass: 65.38g/mol-:</em>
307g * (1mol / 65.38g) = 4.696 moles
<em>Moles HCl -Molar mass: 36.46g/mol-:</em>
381g HCl * (1mol / 36.46g) = 10.45 moles
For a complete reaction of 10.45 moles of HCl are required:
10.45 moles HCl * (1mol Zn / 2mol HCl) = 5.22 moles Zn
As there are 4.696 moles of Zn, <em>Zn is the limiting reactant</em>
<em />
The moles of H₂ produced = Moles of Zn added = 4.696 moles. The mass is-Molar mass H₂ = 2.16g/mol-:
4.696 moles * (2.16g / mol) =
<h3>10.1g of H₂ are produced</h3>
Answer:
i.elements not obeying increasing atomic mass. ii.properties and uneven grouping.
Mixtures and solutions... what?