<u>answer</u> 1<u> </u><u>:</u>
Law of conservation of momentum states that
For two or more bodies in an isolated system acting upon each other, their total momentum remains constant unless an external force is applied. Therefore, momentum can neither be created nor destroyed.
<u>answer</u><u> </u><u>2</u><u>:</u><u> </u>
When a substance is provided energy<u> </u>in the form of heat, it's temperature increases. The extent of temperature increase is determined by the heat capacity of the substance. The larger the heat capacity of a substance, the more energy is required to raise its temperature.
When a substance undergoes a FIRST ORDER phase change, its temperature remains constant as long as the phase change remains incomplete. When ice at -10 degrees C is heated, its temperature rises until it reaches 0 degrees C. At that temperature, it starts melting and solid water is converted to liquid water. During this time, all the heat energy provided to the system is USED UP in the process of converting solid to the liquid. Only when all the solid is converted, is the heat used to raise the temperature of the liquid.
This is what results in the flat part of the freezing/melting of condensation/boiling curve. In this flat region, the heat capacity of the substance is infinite. This is the famous "divergence" of the heat capacity during a first order phase transition.
There are certain phase transitions where the heat capacity does not become infinitely large, such as the process of a non-magnetic substance becoming a magnetic substance (when cooled below the so-called Curie temperature).
Answer:
343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Explanation:
A typical carbon–carbon bond requires 348 kJ/mol=348000 J/mol
Energy required to breakl sigle C-C bond:E


where,
E = energy of photon
h = Planck's constant = 
c = speed of light = 
= wavelength of the radiation
Now put all the given values in the above formula, we get the energy of the photons.



343.98 nm is the longest wavelength of radiation with enough energy to break carbon–carbon bonds.
Given buffer:
potassium hydrogen tartrate/dipotassium tartrate (KHC4H4O6/K2C4H4O6 )
[KHC4H4O6] = 0.0451 M
[K2C4H4O6] = 0.028 M
Ka1 = 9.2 *10^-4
Ka2 = 4.31*10^-5
Based on Henderson-Hasselbalch equation;
pH = pKa + log [conjugate base]/[acid]
where pka = -logKa
In this case we will use the ka corresponding to the deprotonation of the second proton i.e. ka2
pH = -log Ka2 + log [K2C4H4O6]/[KHC4H4O6]
= -log (4.31*10^-5) + log [0.0451]/[0.028]
pH = 4.15
In order from most to least similar:
1. Germanium
2. Lead
3. Phosphorus
4. Chlorine
The elements in the same column as the element you have are the most similar. The rows are not. For example, though chlorine and magnesium are in the same row, they have very different properties, whereas chlorine and fluorine more similar