An ion has a positive or negative charge. While a covalent bond always has no charge, meaning it is neutral.
Answer:
Change in internal energy (ΔU) = -9 KJ
Explanation:
Given:
q = –8 kJ [Heat removed]
w = –1 kJ [Work done]
Find:
Change in internal energy (ΔU)
Computation:
Change in internal energy (ΔU) = q + w
Change in internal energy (ΔU) = -8 KJ + (-1 KJ)
Change in internal energy (ΔU) = -8 KJ - 1 KJ
Change in internal energy (ΔU) = -9 KJ
Answer:
changing shape under heat and pressuremelting completely, then cooling
Explanation:
Boiling point<span> is the </span>temperature<span> at which the vapor pressure of the liquid equals the surrounding pressure.
Above boiling point point, liquid get converted into vapour.
Now, boiling point of water is 100 oC at room pressure. Room pressure is equal to 760 torr. Thus, at 100 oC, vapour pressure of water becomes equal to 760 torr.
Now, if external pressure is increased to 880 torr, more heat is to be supplied so that vapour pressure of water equals 880 torr.
So, at 880 torr, boiling point of water will be more than 100 oC. In present case, most like the boiling point of water is equal to 105 oC.
</span>
Answer:
Option C.
The Bohr effect describes the effect of pH on the affinity of hemoglobin for oxygen.
Explanation:
The hemoglobin is the oxygen carrying part of the blood. However, According to Christian Bohr, the binding affinity for oxygen by the hemoglobin in the blood is greatly affected by the acidity and content of carbon dioxide in the blood. As a matter of fact, they are inversely related. The more acidic the blood is, or the lower the pH of the blood, the lower the amount of oxygen that can become bonded with the hemoglobin in the blood.