Elimination would be the best way to answer this question because you can multiply the top by 3 and the bottom by -4
Answer:
The probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
Step-by-step explanation:
Let the random variable <em>X</em> denote the water depths.
As the variable water depths is continuous variable, the random variable <em>X</em> follows a continuous Uniform distribution with parameters <em>a</em> = 2.00 m and <em>b</em> = 7.00 m.
The probability density function of <em>X</em> is:

Compute the probability that a randomly selected depth is between 2.25 m and 5.00 m as follows:

![=\frac{1}{5.00}\int\limits^{5.00}_{2.25} {1} \, dx\\\\=0.20\times [x]^{5.00}_{2.25} \\\\=0.20\times (5.00-2.25)\\\\=0.55](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B5.00%7D%5Cint%5Climits%5E%7B5.00%7D_%7B2.25%7D%20%7B1%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D0.20%5Ctimes%20%5Bx%5D%5E%7B5.00%7D_%7B2.25%7D%20%5C%5C%5C%5C%3D0.20%5Ctimes%20%285.00-2.25%29%5C%5C%5C%5C%3D0.55)
Thus, the probability that a randomly selected depth is between 2.25 m and 5.00 m is 0.55.
Answer:
cos(45°) = (√2)/2
Step-by-step explanation:
The cosine of 45° is the x-coordinate of the point on the unit circle where the line y=x intersects it. That is, it is the positive solution to the equation ...
x^2 +x^2 = 1
x^2 = 1/2 = 2/4 . . . . . collect terms, divide by 2, express the fraction with a square denominator
x = √(2/4) . . . . . . take the square root
x = (√2)/2 . . . . . simplify
The cosine of 45° is (√2)/2.
We can’t see the bar model